Nestlé Universidade Supply
Quiz
Encontre a sua localização
Habilitar o Serviço de Localização
Encontre a sua localização
Habilitar o Serviço de Localização
Login
Notificações
0
UCSC - O que é
Materiais
Passaporte SC
Quiz
Atualidade SC
Outros
Fornecido por
Login
0
Home
UCSC - O que é
Materiais
Passaporte SC
Quiz
Atualidade SC
Videos SC
Educa SC
Tarefas
Cronograma
Fornecido por
X
Outros
UCSC - O que é
Materiais
Passaporte SC
Quiz
Atualidade SC
Videos SC
Educa SC
Tarefas
Cronograma
Home
/
Quiz
Quiz
Vamos testar seus conhecimentos em Supply Chain? Vamos nessa!?
Comece o teste
{"dataManager":"[]","props":{"pageProps":{"data":"U2FsdGVkX19cZVQ/O7K3xqJQCp+GORcKygtSCYB9bZvS4Vl/zUV/2DBTxBi5vldxJJvWujR44qnBWXrWym1T0aQ8syIENvrAXcAe9FiaWkH8ppTj9Rn33PCKSRIusGh0PFvENdGNAyqBV++TyvPInp9bD7pKywSHz290GkEf6bw0t44czgWkS8hoePBBHdSm5kQBMxMyvE1eUDshs4lJXWU4an4Gn+I6AmVrp+Uk30SiSN/ircYS+KiLh0gWJ396+RVGNZFZCr6Tp50yxF0d4n8xgyp8LsqO9iLT2coR7CF5yYsSYUE2tsNK2KguSWijIu3fum+063191dZiJ7A8w6ys67V64IP5FoUuAtRQHvniWcEpVRomSSXi1e6V1qdC071ep8aGC7yz9Fs6g7A7mPMOzIRbNZBMsEESWKoAL3QltgqNZ0Rsb7jz43E8ya/moYwzLdkBHoEXGgHL051/pnO9eO7y8IxfgEqPvSYUB32LNOOUI/jel+4a0mccIs6VZ1BPAkyutreR7zkZT55ZrNbJEEOmgrBzdjJtSle/0QT+YTf5y2Rs6fFmbsnb4wRkyWV4R+cVcFrQr8n65FVk0BoqpcL1JwoykOPQvtIfNBFyqoF3yp9x1lsZOVGWGLhjtclt2Y/Mtxehok8J7Kn0Jws0yaNSDK2aJGR7ZRiCKZ6e2CIkN1ddvuvlxvdROPYSaz2uRDd3vOia4e/u1+cs7/tlqK6oBaRjEStTDu+B+je25IdOTbRMxNuReI+lztYiUjZotSm3jbOEfgM1gYLmMdBr/WUu5jhffKwTqRa2tsh0/J1kZRpR/b+KEH/gaBirLUZ7BoaP/13wZYEbMwKnIQix6hMerOYBRcztlUD459wW/3um9encHfPIAUYLmsl5DkwLEhbWgyVXp4Ixbkh8/+TUx5IWiEHJmClhGkIiPCkaWhrPYu1e3zG22LLrHKbY894c+7etQ54HNY0ROK3WuqNWoJTbR4IQfSS4v+uBJUXIshGtoM/rZIcsVSZMPX+fOm1ImNGyc+ePgHUPmREl5eNo1S13hsJVHZm96DvlOQzeaRSq0Jh7zpjTjAt3PrsXbuZlpKp1/BKl8SDdz4IvxfQVItEeFFRV4C5a4nv/3Ujztnrj15w2y+k3AbuN/sGMsXHl47JaDrDvLfAkMDME06JUYeOmrVm68YsUjZQ+r/fcyLhg8PYmwJKHiGvhxej5HBChIYTMQF8We/h4NTueHGf9kn1FKsxO5H+BudzZKedlG8sCOOITM8KZSHHVm5lRRnScDGo1tbxNJrMeto8SktdsfpgOnUrbwNjigOCfxr0C1xwmrn/VHJOoqdvtMx8VPoVas0vnYV8mXuafnfPx/OXhbPhgjGiAUTtnGmRk3MjLUASh1EhgANNydT13B7zjClLjvBjdcqtcv0j7Ylwf96QQvhV30csyan9yiToNeP99OCg6bbqaKQlBMgD21ctq2ufgOAuHLBA4PgE7hbK+EpfG5LjstYcLQX6nmAsN54qP6I/EP4Q+s557UrdtEIdM1j+EC/rRd3xPJT/9UiNIFAAU+BzsK7Umu6Qv0YV5xrQ86TgDgMgbgq+SEHoeAzSCuAz9wNK86Zd37X33SaeKYC0L8MfbwI4OrqoXefRW2Cjfx0ZtKSZ3yGcRbS2/ezHV2qutTIfD6NXw/Zq498Ql8jCcBxkXfzVyU62kxONBed8Wdm9WkDsW0sD6R8H5HvqJd867ArbqNZwUOzx7QuWz1uSazncCbYqm1f6rhOSRIiuA5QhLz3OROWQ6VfK3EcMKmqYLGKpTgI1ZwRsmMwuX3BGyvfipo6Umq2QaSydppfrvLz5xFoMeEj3x2hB2sgzUaWxn4Sm2wqp3Eh6BPCzJcptvAJ6wXEdqePf5zywcc79hT92RA+2YNWujyqZ0mn5ZM+du+8XZqA+7itOHOdNCNMWvdBD1mVTP/zpeq9Tlg75B1uUI4DaBNKPXC7Yoy1UmuaLVkfLpVb1TcpIW2ihdDYCWCU/qTZV9vJ/0BnnTsd+TYg9CVRVgJP5Pboey+2ALuYBNS4qXBMFxCuqW4u5zSdjzIPNEZmlDtgV/sEJLLQhMrQeHed52fmXRRPl2XborsL6K3BKXs49HJyzYvTw25WYKHc/+8tMyiVjDt0OmTplI32AeuSTx1TFP47vZAHceBeS0g5sKQZqZ4sgibpSE1XEFg19TN7zybz7TNr1031mHiX83Z9GqZiFTnmQ+AYG7tCiPnY6dC4vlwh1xLPcWBJZ6kbSe7u6QcE03lXmngYSw/DG/o6xc0XCyVQAMvaRqC4SBCiY95kIR3iclihEMoYvYl3PqZQI4IipPvWH5ifNbDZmpQ8nJCrlNx3gnhzbtHxcLDsUbgKUHeLJh8DEPtUT8eaASfW2pkNfoXWpemyQozu0k9/i4s0DvDkejnKkOeuNpROYGxaDYeVfOVboIwDAYxeLvGP+dgrJ6pymCWGqPzZ8OPcopXPEZxGk7LEf3ofLJ6C2tiIi53fdK8krtBuEtIbAMBX23EQ4D/ExrrXg+k6gpbkz+acwDZMkBhF/GbmNMLamqVBBWBGEJRlVU8kC8SLzQ65+0iNjsfsDMLK8Ii1FubF6hq6IHToKCdVxV8iWziBu4JcSCwcaPyhuV+Tsw0wJUV8EstvUt9LfvlwyuXa3PHxSH5R+Cg9Ext8uc8MX9VRSMqYaT3T2VF03RgVURKiG9E4udcHvitKGJj40rvho66QAVnGVXiZiyMEflegaVaYQi829v7OGNsohNNyw7q6JvTdrl6aXqAxWp/nsU4SfpXrE9KkB/CujYvRiXKm0FcXPuG6ivnhlZb6uUraSEM1Wqf4TSFiBgfxP3yfbiBly1ZnO+WUE1YRtZ38msMwZi8fgMxaKrH9xsZbczCze9KzIsljCDh//xDSJtFGeKzqbW5wTFdKEtBxqOucNzFB0twYa99eU6Vsb3AlsbLB7vE4NrFEmgcyTi8HCK76mawRvi30SOTpLu7OFwc3woEbWnb1viaoZfvBhU69Y+449yztR8uvR6eH8HISR2/VOindCtLIC+zcxQWQ3eiPDTL+KwEegEnUf8jDoKASJ0+h9UTWWBwvQVn4UqF4Og98/AjBKfx6UEhxAIveeOma7D8P7JGb9Wl/I9G/OKQfqZZeV8rN4YzqWkF/YTRoL0L5M4n6+yef8zeZdsYWC2yAWDgmVhOMXdxFCF8J88tBBy/1oaa7oYQ6homJ0PfBPnuZWtN9hPR5RAZQMk6xLjJCRPKwDFDtEHB322PVVvxEnsjQ0UuTQoGoa4a0YrhW0UHXs5dQINrv28AbWTUvX9ZX/DRtaR2C78ptsy4WthDHq+BPMH9mUrx8kUfqoX+vYgjhzchDKrPri6PxzrRYa0Ux24iBwk9gpPu4N6gr44WM+nQouioEgurhHw4lygThyo2C2vOVWMO7nH80J3r5hJIm9RDVFZnzKbLU/f7BWI0VvgADZi4HTN0aNUkwzh5eQdUQoc4hSr4VckDNvH8cTFCBUQi7TvuLKppaEHMsToRRNkgbsZSNBuhObfMeZKZTwNat1vO9xhpCAZDuBSTCDPbnl5M0lec2EGwqKe3zC4kRNzfBxqTuE6FJPIXLo3KzY+93KWOmQRwEAE3Z7gsq8kZ2AYxCj/QmUWu2QKsqg5XeBMk/kO6K9Rrl9cqpQ3Twq6XbaTjpT0T/D++pIHrkpHqt+9OGRD14LXy26N1IO4Swtd1U5F1OFJD4vnSsX9l2X/DZe74HnawreAzSqrlR6zTc+dD7smLWsRJniHGunzP2kQGjZC2ncXkZNhvyVpiQAQxrRYKINDLQ5XICXkKUXSp46PpVrhhxdba4AxyBI6tv9C3OrgZ5+eecOb6yweuFre4OZzzneRDVxOJbLb9ydYXUw0abQVj65Pt7BRb139BUf+z7sy9gWmnQ+R1MKIw9DnUqEVfP70rPFnhR2BNOB7UIL2+Pe3M5FIZpaeA9Y0+kRImrli0XMb8f0EeE/DCMW7P00VI+EUwij46aEErpw7xgIFalwI7HhOcdKGdedoOlX58L9OvRu3NWb8rZiIcczo9FN+g0HyZ1Op+nuhFRkCZ8m8wWkRijhLHqGAm3t6E3tdqTxjJK/qFhipx7J+kyWXyXpjQ0xLo1LyxYJ0LiZrXzdSiV99Cx6zqAwBjGcmw19fOoZdm8CDybBU+I29jIivF9hKRzioSMa39hZfkl2oEvy3GtgY0qnEdJqVAfAC/j6ta8j+E6L8zRIWKIHHNIVFlUtWW0GfsVjKJDruljzOORUnqsZbcya1y5wkrNE7ZhjBDr3wU0K6Dt9oawG9CpAe++e3VDo9O5M+9C28OUhF+W3InYnW7J0FIGL5ATgVHbIPa86ehUYgZS+t6w20+g3voxz2N03R9is7A4HtTuGWyNzO5/r9Hj/q2CfTF3cwXJWOW1rIAEIIB7T//CA3Vo5b6k0TJviDPZPDYeLGlTzqaOtqSaxwRJhG2s5ZjIlgh+wQPEtHuspWYgXMZNL+4D+qNvrEMUZ9GqPQqu7gyAVqChh9QY4xcWq1TS4oJ/aVgKSz1VXjtMT3Y2IohJJw6kzT9fY59qtltyb9XALmcGcbnyuJ54QCbrunNd4wF+xZ16mvlL3zTIW2rUtKw26nqOw3TaeC4UU+/IU998zjEFLrgKSs2R2jQXt0Wg4rH6C7+zzWhkOeodmEljn39y7dHAH5vXIn+n+OgnEIhRRNz96Eox3dGz6Ydwu09e7IHujGrtGjzdltZhf6N7PBroTYWOw/S3+dijLvCr87L+pwITTiu2N3zFhb3L8h5bnMrYXU+Ytlxrl98LOg2zrIQROfKb6XyeBNBFb3hG9jjxD7Fiex4Po4ySRYl9mcoXLug1PpYjo0VaqcaTW0lcyBzSHxx68f664S/CVfdIvDrcUXA6ZDv9G6qx56gTTme4UINYont18qsiUMAP53hXUlflbwDeV4i8gaodyhFp8cNGC4vXtd0E75zmUaO8VM8rbrB2w25vRJUuaweqIfYjrneNj0Fy1BysXO5yIPGsqBleWgo9/ONAb6PYq6fQvhSXOLuMTUf/jwsnpi7btxLJ3CiRoI1X/wOvKeArK5Fooj5Dgy/4HwjUQyg3iW51HNko8Mqo7J4af5bbNC3qoKg8QoS3q6nKeOJM/hBgQrfhwwKnKZjAypPSBDxiYdBMzhUmurSViEHWKY6k0my24LvQhehJYhmD27YpXIFt5mCBygIY2tGcfNMclmwfmNSI4PA4CpDhSZLiOhoJw0dBwJrHccJitjM9RmEoEv2kGq/Al1J7lew+cXRSNJsm4xlacZRhayMrcoeR1N4bccT9qoYyn4QsB8oiWCDUFs7TLgbXYpLVQBL6sVJ0/BU5pgijOGEJ9Lsag3q+P97HFpdY36ofe4TULmk31hXS2T+mQjw+LLPpbFb1cgI2CK+6W5iXNfNhf78FjmlTjnSzb9ghyrW6Jwx6NlfziJekQwEWI1u+NFzWJqvKdgGA3jpDG1Jdh1WVJgYfrJOiRWJLtcRyAv05exNZKd2ELEKbVbjkKGMajDepSMcJUTmN3SpL2iP61+0fObSAruSxPF/w0jy7sD43iNx3QOPyC+ms/OLejpQlvE1qd9mzJn9GnZtH+4/LsErza6LCRByp+ActuwVZbG7dlWGtQZd84XyalyDljMdL5RsTDSWHs9QjnZpbimhox+D80yQMMsyJtO0O2AS5QG1JbbGio19rkBHHMXh3GYDsVGWEzFKxsQmPKlFoIevo7dOXFNnmSqteoEgItVRqu6XMJ8dnRmeOzYRF4DhAi0jvPKIor3vdafR+VbDijlHvc8WgjOt5dRLE5H72xtU+yqLEbF5I3I7mz+AO+xPa62ZmhxC7IhZ5RofVR52BINm+2rGsdSmr366eVP10CSgY0migwJbh37F9OpGiW0NvgyCwbGsjWuBuan3paXkAYdsBjMxn9ULGntWPOgVTkzhsZR7ECx+sznQW6HUboX1M6xz6bIwIQPetgIfRt/d0JoyihY2E5N/xv4bCN754tKGIo1n/I9X//7u6Hwplto5IUzgmiJQaTSFSsb0prAX7c4zMRQoQUK6m1Ff2EH3RodrKsXUWp6XhnBfNdxbEafh2sq7vp384ljQZYTdh++KZkR99gtgLN+6DkX/9YZ8gAJvRZ+354vov2M1HZg7rPDUbBTHyjVOKjR+SqTWw0w7ecqSacUQ5xdh8lgSg6eWKZKFB5nzjnFjGkwt/xFq+R/rJBYJKd5f7qFt3cHKiD+b5K377/T4URYjJNuBA1vIf/3pExphu+VHKHPUKOYJqjkKVJ8GXKFCDbyTFZtoIHyQtKdgo+u4PlHw1KmOnENHfXSzJmjRwhiIF5wzwmCyByY21KqgOoL40+IFZg9pq4TIjLWDEte5y1cB3Tc12CjERlGK9cGh+NEjEtbhgqRX81Lq9CAn1zaYpSINLxk1V8ht25cbc91MvBgWD2SXWxTqGJvVSsI/Ws+QyLgD8pGBpc9rybar0s9EqfY+rFW6gEu5cREpmuCSEXjcaEPc9kSwc5r4ijABMyoD8uV1F6nsmbyg1V6yo5aYjroWEUwJ0sOsy2unt3e+G4ZDn1QND1sY4En2G8q6N+vp2oG5DsmEvBDJvzLQZq8lAEmnDkjIYeVrllGtxzZYY0GIUFtnahw/Y746rNKtlE3hAsGoTtdfGOiw+nfUXa+1FXofd0EIWPjknD0Xo4xNaEtHRgJre6q0/XUhTdp8vrKNwHjQDOkceUgy+b+XbIeBA6wFXDpF172rNOKkW9X1KG6TINeftilH5WmiCNHvq2FMb1ZcZX4PDkRtAkxVBpczVeW9cBQfT2Of39K2kS0HknvuURnTJYtSsJ1eijJn9fpiK/r6Jj5YSwbERK0Yvg1dz7n71nv4kuNcHbBznRmYO35Cdi5IPGQ1lzseBEfi1oT35/8JCKJ9I8HKCaZ9jE+j+jpmANDxlkfmRKdof9lbV5VuEqzRiY9yb+7NVglpFzwsAiuE9voCcZXZHmENUJ/T8MJ69oJbM2+7y934fsFH/wy06pco081cJe8Axzw/KC+0wBjAsimhTe7p3P3j7/nf5+XyqQjrGWz5miF3w72NXSQ0mcTf7UmUvm46KaisSgr1EpKG8qmbqw1FGvPw06AWZ17QcoSs9pZj8d8fEqnouH22O3OzRDStsVJZBsNK0halJW3i9fWxZe7OhiEmjUzECfCv+YZV29tIuWbJBqT/O13C95XfTMCaNOxgUztnwXGFu5qcNpEPdmFAGSndHI7uNNnS0ca7w4f5j4C1XFM2/5QrktVyDHzfswryZzCiukknllnNWUV+zqTNPVU0SML86paSk2VC8zvM1AkS1pj3uhCpwmurXhnxZUkdgSj+lYCk4fzZv/9RuAGP2YAfvZxOIWs3E5j8mGMTvSk4G0aRaUJQ6kWSie7vxNTO/hsEJTYg7/sPcpl9SCoj9Z3vZ+JgGhBmgfrVvSr/u9uVUoZJSgr1lT7RsrhOUCUV1EEJ5EJYBJZRJDgfb/YnVSQPEKHGFiwz+olMAmueW7ZlvQ3Tz2VSmYDMZeL8ZRrvahdv+gT5btW3qke3VoiYy6q1L3HHi4BXKcRj4Z2cV07hcWoGuqVe6aGg4K5oE/VdMFWGPpGaPZAOUosabgI9QRnKV9PdNWdNL25Tlkw8fQwmnm2nOfDstiOfPLfWNFReopHNl3w3K5ll1nxiRX3JEbKVPjbKlr/c1PtYtNY1rb/YwFtjmq6vVKLLEkqRmTJ0J40uVY6E6gjqc/X0LJ/uyUf8ZhEL/tUSz6+h+9FFB1r6RCdJxzt+Ig2jShKTVWvTrqCBdpM9It1usT19gJLXL903WqCjonwe6MGBaht6iB0frB2dSM5s5Eoukcjt8j46ZtsXfG4KN+Ka/nAxerAaKeo4//rnBd2aQIUCspEAU84ufnXIh5hkcudAYjnfFS6PuW7ZiX2mCa0QBtctmypq/jFvE2p+ZN5QOJeMD8ciOxgmxZ11I+JL2nWTTtoz0A2XmrgWONZcTCvbc0JIEwpT/9wlKamVTBvdpwzrpDIyGnzRh9SWB1w5+b8vsrM8+mhgPJ6lQThpywZLeeocu/nNple+aXHW2glymitG6mDRQ+2/e41MOKvKSgkvaM7UBEFhRNh8Vvleqm+daFkHJaS8ntVkfOwonAGnJPppGqH0wjPLxeWA1GKTE77vI1aAcY2mBQTtsCpmH4NvotMnOkbpUhtwHH9426PWX9VW89yLQsMDs/XVBjtMZzVUlv4RpwKDpJz3KjkzD/7oX1J9ZdcBg3f12lyhsY5T38TjmB05yYAjc1UDuyQoYooiuTT4Yx71J8FAfAX1bdlkFp4/BJybzwmWDjZ8TNy+IY2Jjhe/+xAEhgkspkiTiSsDe6fo0P9KLsgEWuZHPULZxA9OUZytfvV58AKUvZuuJST/cm/LUeITMeaaUH7hPd68iPGW08hf/Hh/qcg3c6KoS6hQ8eztJ8zoZlNdnHge4MsKsK5IFKLg4dO0C9g34GZMI0CDy71j3fnrEKuJkYKPhaG8JSNMzM9GT5cEjoX9Skt0+iJWGedd76h3ztEyUcNBHIKViFRYNEu/nx74f8DF7cf9kBYUe0+XYmeUXouSld/Ro9nmIr9HoHmxeA3pIRwUhkwxbNy8iLj4EAd35/LIuJRXCPL8Okdjbyhyk/WUAbdiy2RLLcx03zamzYQ5Qe3+c7OW+YbXm+W2Z3FJQMH86p484MzBGxlqdxwmpP/dFl5F04tGeZtgIwruJJ/Ywy+OoR/rYvOnSa3+rYHfYZCNDq0fp8paKzkAdG9GWOWkl+OzW3nF5myBTk2GUgTsgPUOHxw7zsMqXu4pvDpoNtoh+gdhZnDv5kc8FpFk8DUUlxETH0x198WDwb+nq0iy2RwRBHC8YPvfNTEgTHQKXmrRA2Chn9aa20l32dq2pD39ixddt/gyIPz2vc6zKfwN5d96t3NmNE2dDbz1GSlm9nC3TNeGHM/SA2hflU1JwyGxO2nZuWlSqJhvPFDEIKvORnK3uRgSZA2n4e11DqIW9VkDsOVPIPvjVa2R1vtlG40hAA/wBURMf3DdkxfOQLMpNFLGgXmlEFFTc+ygKHMS84y7HecyrBbZZQea2tQg1ZBm2UQgdpNdtaT5/8zsicTt0NdsMg05YFcGUJVQoluD5XwRt8SKk3kisPyznzqsmf658IlVQRurALh6Dvdwu4BKbfFtDqN4fHWd4M2C5tljjcGAVx2tXBpAHaeHBS5wiO9FCFQprpIfqUKQEx/9gngIhFAOk4aKcSvtrVrOj97gjSrO+S4y/wYdG+VstXZz6iT9HAUryQPALnL+/EtJc7CLcWetfY4NpNdnfFrKuSbFd39eMqIlRCZvrn3528+xPhuVXNfZq1tzldBG992mXuxLvh8ffq32vh2JtLoznuKj2cGdq0fl0BB3iNfFdr9CHi5pL574W688zYN6Crz8APu/nlWkEJf5nvzLI9UcUhTyP1Vh2HwohkJGSv9/miWEje1BeGDg9Bv1qMEKxv6bTzyHY68G7EvlwduZGzIzy5cRkPthqcUmIUpqvir/KJ7kaJsfi24C7ZqPTE1COfQrj4XQRLiz6Buge0eL533haljS9JX4UhLFo1qp5xpnHbZZf/ro5EJKZLyUT4J7VaZvckhbyK9KZn/QZ9uJ6MCsr/mAGhg3Up/xsbez4JM+HvuY1yo2RlptUHVX9ld92Vp8DL3dfPgHV5IfkdWLAfz1EvHpK4sTlhj/wcY17ROlAtH7/mZK+pJOSjdojKobswp+0C/2ZlJmAAnbM2krS5NT/VNc171OFMQVM/fg+ZP3OuG3PP07RPBk06qSwbYSnLHxVqPFLfuWei2FecC8utNgfaI2mDtQ4MWZ+qJ972npmFzvpcVFWhL9KFMWgAFQn+L8mKUhfYiyvFiVUiI1g8kY6ucW/FRSNW0ODdnovbd+6C2gPO/r2cachFe/26yz3/ZfXyOIXNsT2Skguvz7QPlbbkKoUQG4XAzW+M5q7CpzA8cbDJXatwk03POrN0/hTH8ITDjhHWBfGMKHphu85ZeQAydYQhJjmdMtaOhYDimsZf/Ytp0WxiEJKTlv6AxB5891Sc65B4kIE3OXTMSCXdIr/V5K2dfM3lBFf81avmQubbH4CgoCZ0h0u1mpfQcJy0dhSi4uj+4+sM/AxMRoGapxNRyDltoX4h8FnMBe3xz9TYNbgUSd3glQwYqJLUKiy4aQCojIyGtFBLg9c9u9lp1vByDP2faCH3lMU0MOE5sML3zttxqnzTHG9qCnHiEa0dqXq4aR9aRps+GNaCfNo7+tc/QDZZvodTniT90LC+cw4eOTUbc/eYAXNmfet3kTotHmGBXQEErU9h9ZtdA3YKwCM1iZatP/HLPl4LAUFET/dU9jRphUOrdOOLbZgrqck7xZLPd5x+eiongGY509+fjniCvqOrGxNdeLnbgmuC/wpdG8MCGZ0Ny5PmR/5oQ/ZrFX+hI7ebwn2p15xKkHhdQeQgE9htGL2Mn/+oXvyfFRpFUe0HvunbIdO5kvemdAk18FfWGR3A+vDXtc7yu/wRplrfTuxvYcWvK0UxcVBY/Jf5F6TqSl7MdsaJUYirZIhU2x8PqyX8aRJ21yHrjRod3sllX0JkbbaFyUQfMOUol/OpX/ou97cwpnME89M3bwFpyRYXX0q/eFFPgDaVt4kwP5uC//kyydGdmiu8Mahghmwl2WOyUGX6aZ0h/syj9ViG6Lf7pUBpFiYVVmPmMl/+bh+s4TFx0ITyOvwaLIXdu0XnHTkiN6nQTqzujAsdrutflnun16gOTkjGM2l5zJ0oafOtc4VTC8O/kjgu+W3G//zHSH1gYMkvTRBpiw+JCk86FxMkzmNcU9A7XcEKiGbQwr0cf2CtNqm1TAM2fVlailxdNiweZXeeJ/FtJntS9O8R0Q37lflONTkN5FFX2KjUIv4rzHEg9b9Cy/CXpKH0Y6xkwQx78FymI88ybHrKX8TJJ76jAwb/vda4VkAQ2yrxygHOy58jizMpGH+qMXKCY5WyTUMO+Z9nq02zqJyU5uxKRLRwleLgbuZnFJdkgEjxqaJbB9TnkV17aJCoOrheIhbd/191F9McKFAIIX9bVK6F4QXeSuFE5uSAPtAowKuwv8ZC7sASagAaQUf3WVP9LHi84lJccHxUmDXy08BsW/s4eOwpOcL2sHud+VB5nzHES642oh5Z3V9ak1SFv+K2RnoEOxzbK6gwOuXgIWg5S2j0+1pEVMFCzf3X8T1dbVI49bbW4+iDnXWuAnFZhlylPSlWpGDOxQF+I3Z+tcBOsJ+wkksrJzuhp+FGGirekn2dDgVASzc0E7doKpqtYOvCrNKxRbjQipKKNlFFZEW2KjWPeoCyZsOXt8UfcVNfXazznPfjTfm+ByhO7bwG43eQMyAkXQbW8pHiecgFqXrVUSyfwlw7GHjVnbeYrBzOIXpYljZOl0LI5tdM2v0gt+3nx0gE277Dx6XRY2IvS/FeeVOfdopChTVAN6c5E4ze0Bd4N55KjERfz/ldsrkCklwSjV3n0faKEnxskV6Uv+wdlIjrnUW5aDNKoxvrNKi+CmolcDW1osPTTTYXM4Evu+DXJkH6P7Cc3ql6gBmh97j93R3i0gx3D/Akt2T4bJ3Mip6zVFRt7a2p8ornEUOv/EvgMLmWFY1MSduqcSfWcJKYHPO1zZgtrM3PvrQO0Z39WBIGY4Tj6cSm9j2pVguPrE6MSmlnnNkEA9CpnCT9gPtw1pIASdiy/HcfExGNot9OjGe2qfdjHL391pb/rMPNnt1k5LWXfS61OE6D2WEvnzwMUJ5nQxoCjx8EUMMNAHza1xU8flTWDqQiUNp5mB6IaVZrNQsY/j/i+NPo8h/awn3Y9HJWD77synurF+aMyiW1MbreKEXtwQtLdkmu5m+HKIkkG7VIY9y75exDnB4z6qRYpHac9n3qSs8cqS7vNZbmLnIQN3kgQKilSCYJ2X2ChvQeF1tndprEZkZI9rplYD1lGP17t8iF5C5lsUl/nwU6OWETog95MeafHzSu9ZQqypbCVgeRpAKx8AvajoSq1VJQW4M6OsPapMkHrpolj45FqNxNM16FgwLkliPNUZlu4cC+PLnTdyNu3o+mZH1h4JDU+/niiK3SUOF8xMZPJzHOPlYA9alLY56hioVNkaN7V3iinufWHdaHEp1FtaW+esj3Tigtsxw7MvQKvR8Tr3JfyQ4HcYqfR6nByztb55hebYlDudLVAfq7rCUAe8jkfaMJVjAwLb0LQNJnL+D7X007g/ejBHYWzXI1SvpiBxKdo4Iv47HFraZtNXsLhlAywXRUaocP0EbVKmH6jJHA+0vyXPDfGnM2AE4JsKIUNVUQJawOAHo9fjJ2ymfe0e3C9RgAxrRDaJcvXEVdasG0wk+75VUxKd2sGuxUjhukSl7d9o4phdYiinqb8qmvTWrnwOBFMG3AjP4DXWTYBENvCs1nNDfW2ZsBZTzfQw3dkKQY9BrgPOZKpMtT5PkHZnt65zDRpObeJP3ufwbgGTasdxdnO5lwx7Q4Zlf2WK0kzL4uif5DlnYVdDNnhNvIAX0SwpmdK+f8ejtjKgWkEYRTonNQmQ7jV7vJfmDj5J6yeyYxCheEXAK6/pOMqlG4E9ZCIJhgw3Unpd5YIwrRSKAxbRrk+xn6Y5jYjptyuxcGiYsPCpOCy+YeeWVQJMpov2RbTV4IQPzSAdTbf3/ogX6fq4CnE8fBZKZ+u6CQ9vnCPs5uu++nv3o1HI/ox+11Bz3RCNNQov3U99zqFK6LpBV/0S7VV3iCAIfJszmQILTRw2+PRnztxqsIPzduY2CwX88HhXH+vUTxBY1PK5LRi/grcD9DKVhbjC4afeymyRU2nkMbKnDI8c3JtceURnKPVTRDPedSmJOLVNJ9QfCg/mBOUkCpuW+N/zQl9EVkUEDgmIou3fH6wKOlb8902/e6TFPNfS8ici5RxunTppqIOU9vrKNUfvHeMkeyFNblTosLcLBteOc+05nGT5+N9zsQVT4PhvEzA4qnwjE6YttrlD/HCH0HhtjZf8rrdm+Nv/P60snJyZnBhCzA8DAUMpGPh4SfNPkPBHAhyp52xQ9RRpVPc189WhFdjnaM5+WoOBVkasm0HbWGNTpiYG8M+rGAla/Z7tc2axh/zQcUX1yXYYXYgX6ifFCibSYIxdk97ubdMIX1ejHnM7CpnDkTdDnOy2KETj77CT4slMEkX6wkMGo2pRGq2ty8O1ICehvuBtb5pd3Uj6Iifl1r0MdceaPG+9S+gJEx0jGE9Wb1YpS9dr/OR+6E4xBMmxqy9GBOHIs2adOivgPu4CtZXiivGcsRUjbUpTO6CgbRLCxvzjpruH6I1xUpYBkfgWQQBqPvF0KHp9f9Zn1DF6r6mnLhDR/IE0S2SPEiuIU1BRJW/awfmcPeX+CX8v7eVNO9XTE+vz8PJImpmLJEfgdqLf7XbmlzVs43qD9747L+/Fqvw3YQdFnj0HQRI4ijP5v3DPOZIDUx4xrpyNqoUUfPexrR6vMdhlVCkMJwUw32LMz9Gr8H2BNDiWaDxnkjUF9Vl0WX0Y7LDw3SBa7z/D6R7vT528wkJIY7wBh1jtfkpYUJc9Z1zRxhyGGMNP9XGEIsWl8ht5neTLRXNOVI7NLe/EJgyfg+HJy35OQSCufW7OZEaPBwPIA+pusupfGMgwGhCvmVUaLsgAZU8o0kLXXVLikbZIAhtBzTfDgpuRashK23dhlSXz+oturiu9CArS3ASyXh/2CFKRXHCYI8dSi6Dj7pw9qALqZSs41CLXOMW89E7Bw1+jNp+vxzx/HMeHdeCimqo4Q2DYF7202DvHoyjAsAgn/mYP9y+Hn5u4rnSpe3QbtqIwuiWhdRX0eZGWbdByOBz78wrkRzp+ML2qzdCOBHxVXvP0gMU++ONemvTv+dAlDwOAnsKm4X5eZAeSgcEdPzlhEzM9Q8442JmMd2IWt9/ujxPjmoMVEGZb0A43TG289xhZsDu25zBsjjY9XaqBz9y6i1J38U8K9qzXFhTl93FGTX/IkbZXSBSikndmu/RFm7yyT7GpE3fPjxVF2Ja5Rda7xa3rhlCy8MQ/8xysizC4yaKk+QvPWGujIhBLPnN19QBr9L/Hd+4y6B0gG3JQHz6Lj24ivnyofUp+xkf3QLWad97tdYRv+8xhDjpGUfBXkFFCCxjB2wU2MeYo5c0hTo3BCn/6EmnsIkfIbkBtuOfV+DChI3XJZFlZMnMnQdNtkC8GH5lQNmQ1PJlcWQNJW8IPR8A8mWPYXUFUeK2j3rBM2GX3CdLo4Vqq9bSik+PS7B+pO0sYl4zl/NTJdeRJkJQzXliOXQN6Zn728+S9k0qz1fA5hOy9sfbCD2wbW80WaHwgJDnQErFf+tEMecb+aneKuiDskXXllXXysPQqvt6+tN0b8hgHXocS0vp1e2mOryne3CXQamFKmmcyfk5izgTIMzFjh6DosvJElYK+zgDdqim6CSQQT3T6sAjzLFUwG6h+mb+xTEg71ubUWkVgzjjYCIBdryZv7+SQ9RMZMNm0aPDIjWx17/UEokTN++2nrYkMPoofd3wUyWbsip40Xma+2akgwBQW8ZKm7TpCLfjJR5bEV9oWi5sGG1Epvi2nUfyuNpBzBYL5o2wto6ld8PE6Ex+bhWqr2Vj3SW7NK5l9gFzofRKw1ld4sOZK387flvadUPqtEZsIHngomQ8Ywxaa9DollR9R+frBT++UmrKM58FH1yN06KtOF13rYgp0jbklQSpq0aKL1/LkyLgOqbnSpl50T+VVGJMdcPNs4WaWG9spmxSBxR8CtBwuTEbPKc38T0TaLT4nqghTHCK6r7uZOVYNcwDAC9M1jKHXp0bKgMJ2OQkiuOkCaHtKnIruWJK0scM+hXBKX6ejlc1JqPq+3my3R95zv2EwNr7LYOd2ffC7sTMWBEaKTFo5ZJnJnCLVuHSBAcny0St0bUvv3Tpsu+eGVQTPaUMNRaJslMR94LTUmzV7YKoru0MQQGk34151NZ8x/24i2uISHVtsdjodq5/3ZpQ9x77BxRQiMzaE3Ykbw9Duz5GGoHG9Y2WaCrhuf3C23YTfC+p1VHjeTMxDMxJQlaUv2zx+xhKQAX1LRS5Bbe5xnWYIrusGDvDCQSdHk3rpfSnep9eDAGXr8dkMIAhkqPylrWKKGgFSqtDKcAhOKpcLxikiBBmIprH3Y+thC5IWpaYyoFL3WGhi17vPuDwuOF05kfzhlj2xoJsidjW1cPY20ZBYCLDVsVALcNPbp90RENceEhHD6H2XMRnU0lwwN/0dIM6akYi9pUMtnQqdPPkl+9k+XNTTlDBvlwWUcwx7BbCt/riAxyPthlLjSe/SvD5i+SQ19FiB+5E/3AscY0vd/l+w1Wdf4R24uaLUhJ9Myj8iSmY9faoU6vj+ED6MK/e/5/tMSxO/D/JISXipgFbtFicj5yZtRfLeUhfSYJkJJt3od5iZxqRMzJshP3XY8WcFuFrGtyFwu0I3DA+FYUgk4g3lmIbeFSnaG2mX4Hu+oP99Mw6OeG8CZUL3WGwO+ZYf0/L3bVxSHkXfhWOeCQliX/U/rPd4V2waEZsLg8SrELQQjuuxm2Hjm7lzlKBmyyLJfQar0IpwRkD/VPv8SZilyRerSI6kNwvZobWUTIwb3PHHNfEWBhiBU6FVHssEgr54/gTTN3bX9oTVDUge0eXoFliSR7X2MQnubCqU5aEFJSalalMU1yzEi7gWM9xRppi9Qw3tkA3TK6VgowQip7qBpTq0Pasp9Hq2JZE1BrJRQHYgh0jOkUDgCh5W52etDmQquaZQxqjWoJ09+YdBQCXeyHfmsG0KPVHwecQI6PL+8aovBLdYgPevEKwVFFEy1i9YsGsRNhJ3vjeKj+YrH4AtURE2QMZAqRHEpi+6P2j1bwYiURRtLYgnQdyrgeKNI8u4t6sowunVX9kB7WwypFVgsfq+aAhEFS9hGZLLmsB2tJjQw6gDACKpnnK1RCntvvz8qWXTa4eMa5CW0QIGFYAvYnTifmuDR19cEU5U5i2tBGHTnbp9GLJlVSFJHh1p7obZDlbpMctxEAAVg5QVxbOJEBF4r5XLjQuXWLkLKbNcjJ73syce6Eau4jYhsuLbHig0/Vk5oY1ad5Y6YZ2BKc/nku5OJ9Icd5ers7wSIaPpsGolvYsOpFKbDH4cPm4c0dQAhItQHX9TGkBR1+w9wGlYoyITAIA9FkQ20zQeSq0dKGjPPM2YhSdjWr8QpJDRGesYZOV78Kr2/QlIHxLT57wyqm1ZDCz4D7txVGjO6U3LAUg5JrADlSlKUD/EdN3zDnA3OGTZScgmuU4DY/l+Wa042lp1AGsAVKmoij+d5XOZou/KVMUttnWyHb32vbDgXGxR+Dspoomw7xmrB+2/UyOwZSNFxumvs5aY3fSeDtCsBbTs6a1SJ+GWFGIQqkfVKa686YdQqBjm3s3HtaaQuTMilTQUIyVh/WUhW6YUPtrtzWFYbvSDSHb5/wIhk9uSAduxMHpmGZ8FLssarESZW4DpdePsZLJou89O4rzQUoVZEkhWr4LyV4v2WsR3wc9whIx47qD9dHWwV9+x5wYt9AFHtNE1Zg8gB/CW9VMN2vYBxvLP1DdU8etDMK1GQJGbzRYtwf7H+Hhh9kdoNynjBPg2tetdsdSTU2Q38Odr/9qGQ0xVrMeAdGbgd0ceAK1p/vBf5KehbtfUoSY97uPbYPJzXUwuGEJgwWzLu8FlFVYe/sRxUhTn9/Q/q85e1eJELg2kHM7O4cCOSu3aliQgrXEyJyhDcNXR1TCNyX49bOLB4hvQNc84hLCZVwtavEYv2wACHCJ2tAPWVFkB6CnkRW0LV0B3o/NqyDuMQitHxYaPVvNt3yPGxDJU7ui6+8eDQbMn/J8ypSIgeqv9n56iu8WH34BsFM9+AoceKFhGeoOlpPgw95usLb7loPE6QH21FseRu2cLrSVNZVwmPS2fR6s5ipuKOovSV0cy1jCodffpRMaYocai0WgDfhalkbto9Mixu27XY39IuH0i4WQ0bnkg+e3/47MgkA59XbZlyYa1cDP/R97LolEap+qlenpMZAsuuC24P/Wvs4Ki6wfXD0t8IRIx00Dkh9VCfLR3svoR7T7mfWreWClyi1VJywuntdSjiVgf+JXdttsNR8/AAfeqlEl5dDR7IjsyED+ytLyOw751ufIvckCxrkDZ6vYmW34oXKYo3JSyxM+cpoa4A+w3g3A5mZEHwG+kVVmAe1g8gSO69UqgiSabuZO65hk4r2KyBDwRpO+PAK25jeHeH8RTS3azYe+br0oL/Pglix+JNjYG83BFS7X6LRuUAdMaabQLnEHMFlDupxj0A7g3uPkCby17QGsjseupArelsF2scAILalkCNYXyvN7yYGlotXGTiE3zO1mUVmjKVrFDw7my0o1bPMnHil0BixigyVOHuSkj9OAdOWaIIf+zx2EO62q27vUg+caJKVLVEjSBuE+W3BVacl8SpamVjLl73www9+YFfM9vthoAjPLLV+tJ6WgYgU4Ax5X5hAfx8s1HCmHTiTXAp1WI85Q4js0aTWjm5WzTvFiIyF2ub4zyfmN4WOGxmwkWa3UsV52IB+hfpb+GjHfj+h6ltZnGU2+CCljax3sWwjtFQZVRMLocazAglh7az66HADTDGWO84eGYtXSkn6gvPgi4EQT7c+NXcJsnGS7rrscZ7DDC0vtHPspKf9lLM8NTadZWXHlT7rFmGbfxyGf0iKIGM0SIguPpKUR6YIaXdsZU3qjXtjX6Fehp2Pa2HTW+fiCbZYD93xIJJ5hvqJH83KJl0/0G+ZpVxE3PBfoiXczU7OGfhD1R/LIwBLr51YXViXOv9yzBHDTkNQNeVWZv2c6avRxKWXtnFc2I+mT4TeAaBdkd+HguATumh/QRmpCtBp50BdHwesgzr1D0eeyvXLsyhe87iGryjftF9krg9TXH9VXflW2h4/WK421flRKLb8cXl+wOtfhvni3E/J4FaZjUGKwHncboNUnpWHk3wwC1+87hWkRKhx7gPF01ERDDvZBydaSx0aqezjyIha3FBF8F8gOJ92/nmxm4BKY0m3uTp59AvkpuZdfxACGqIpCi1Ox8CB2ZNYHVd9VaXkql5j77hvRNZlDLTPID3NjKodlxGwDcYv4MPgEL+dWVloCsesn1icPup7LlWzaYk6fskLK7mJOVtXUdVTF30OROssxEDj4QbebS+jYhMBNz2rtMWG4BhTtnHaVP0iMfJLkX5ShvgDwOCk1QaFiVMCOZzzH8lJHzT6q6TLWiVjrCwsGqjuVtPpuLNG42kgeMP/H3rVAYWCYFeJ14BzjNmtLQic0qCjem7sgC5I1L2MBmqxbwmyn4Mhx6wo10JpTFgBvLUAxDnkETtmpIFwd+xqZFDu0fV7uLuNoXADwCwoH9JyRmS6dyXrJrJsElqAz1WEm1Zc4mcJKn1NTqp/LfPN6RfcdBgOa6Zunol8TEpuiIXStqhCFItLyu2OAVyuRjuSjxtTT0fBZV8RPjbb8XSHeqi6hYTQbRDTF3LegqMMY299aEgwtqx74kTBGNZ7vA9GoGor0AT/zKYT+7WczCZHWN1MwbIVgGoeMTy1gPz5ExD9mLWUb9+hjsnXR9/jXeHM6HNSEQoqrvhs/5aFmcX7s6ElL1utg3l4ipRGcnc+q7/Re8Cds9ZOouTo22OtvCOwfFkCKB2ZmM7jG8QVTeA995FEeDfI1kqEr0PL9GIhQrKyb7YPpd82adUdjWzK7KrWICJui1zy9638DJWiUNxhMWW9up8RAO2xaibLYsyzuqmrFOjQis5Dmm5hJXu2w4bUWRIPh6L5J8q2EbqbYj5l8QlXdimTe7HUHI0SkV9wUQh10+1fiHFvetSdAvI1U4s0GsRfeBqQ1yAzyLDPlfx1IQUE+255kRYcc5PZ89N+B8Q3xsKcA6nMhujQQ6sVelyO12lIMwwX8WJfV3I6RbJQ15T1HKcR6QByk275UaFBz/qG+RY1U01n7I6wr65k+ovTPVTQ0TT4CSLcFfS0BijqrB8hawau2t0BOXsbqyfjqnads0YUilnfxQrIUfcI6ffpFQuviK5FIb+CdDMPCFLgNWDp3AP+gGl1R8AChEF+r/ORVGn5yzj6xMAwjEFkGURqCRIK+V+buB9XvRt8e+E5eGXw4DosAt6X3hrqzABj0wN2rA9M2uLThvBCVSwHBipcYUG0a4gDEs5l0ZL53/xzrDK/hXez/WLDSR1RftOtcQ/HlOxLPrdH3nMBlcsEnFg2Mmjhgn3IrYnlj92whtjd5elS6Upjis18ofcOCwWOyzo3i1k48K9Zgb3uUjIbpj9/YLfjUAAndGloJbybdFYWJXVD7GLZXvkwqQsKxNvN/zCPYIaU0Hv2uJXWrhspIj4MCUbUt5PHYyuvUaEI1BzYq4iUxVL2Ec2H3qZvhY1T/+CCzHJSAkAWJTsVMpfbH54g0ReSVvv3zc3W4Bq1koqtmptovJ7hfFfOJoSXi7p16/m/UtYyI7Ek2WyCosVBYWK0VbpkTxxyXi04lO4+B2WMZLeY2mRu81Hzo9OiJaXIURvIXAO0JXNqNyneNYEb7UDp6MC7nRusqsyCC55e4uOqez15bQ9fagdJPC68nUWrgYgMzkHMOyKeYTDx6A5bnHBBHkaPxHLNz+H4rqoic6YkNfqmAU7v0AV/9eQCeJ50YgCwMrCPSlXDmTnMQxQbMg+FV7oLIAI9SZzz3Y5/KPl/NVvQjgkGuqiVFb1HEwCFL/VDUE+0OAebsNzxxXHjNmSaMEROJMrkyXXGurdu83jYizK4CbwCpQlrAu7UJgvv0UkRoohjY91UoQKsqVHOCXm838W/T/WT+h60mW36VHNf0qwR1RZd85ccQ9TsimoleN0VehZxKwTl7Xbzn1oGVRR1YIE4flfXyGeK1SAjHKp398QDSKb89SyPeeAczPZ1HplUQISuLthqrouLLO1gYtzEkk4NlyLW9pz7+Sj94OeXMPL0+5X8kceGHI7fxuG9S85xw81cMH2cfVB82h5PAB/zi/GV4BtdqVy79YdvkkhBrjoM88rpx9gIxIh5N12m/4hIkEtzPbn5RljDNyDmdUcK8Og9fp9zL3MOMvhI5SfoCXy/CV+pTtWVX7BAHNpvSmlTiRfPCE51TRKgTSnb2TgUmrqcUs36Z8qx7gdK1nn/PNBFukGUbvNmPWuIFKHEEjKlCl0Fuf+/dXLu7euh+jQ54PUJ+pYUKGazL5a8Jo0CsN1Wfj5YaA/tqU63aMLrx0Rxl2S+Arpkg2qjgzdwr2fvUB34CQlVpcKUj1F4eRKwS8MqeohQlsKKUTd5Qu/0v1LYTmLTxZtYcExn8rLJuZUZ+yJZD1bFRzvdxVshjmo0dGX8Jg07j9uiVgC7fdELKij7iJuXi+OwTyNLMyjeJFbNLljGGI2dJwpA97099Va4nWtia3c6p2wWqDwkjk4y3ZNF8WI8TiJUEnFQr7boFhISof5Fsb5M/w5BYfRdxc+MQuihFPw7tFAH4IolHGv0gqs8gzW9FrJkhnsDUp5qO77m/Cd9qcuRv2e2du9OrUHE2n2u2P+AHiwE1/Z+Mj7D6RRiWKAazCm6T4AvgFhKXg3ZUCrRPTXuyGRbWJwzMdY3Nay952Bo5k9BV3Dd+McDrvrK6GE9Lcb52zjyNxZa6MFDw/vBwSx7zNZUoi3E6d1siO5WLPIAP5BI0laiIHZs3pI8mIQDwuPS7r2A4OL1oJxiLwPi7BVCaneAabs1JMuX6utzpKRK+Ybnkmx5TazIV4BKRVF5IhbTm/08lR4o6a1sLeQPbM6HFt5jZm37+RsMYLZLB8AlkDx2Ym650lMeAoqOmj1PBLLjkzZxOucfFFujl9MI7hTrsKcZDrJ6lT9TH2Po5D4ftxkztzbBk9Gyj2T/1ShlyV1HXUSLMXU0D3S80+itdsXaO4HcWjTCBMDwyz17X8ciUct2B+Wq+CK0iSIhXYv5jCKgy1VtOzpx5jiLSZ3/NKxmZPQ73r3+VdGis2LIXrWnSPtVhTCzBkIC4zZp05adndKyUoppcM79tZh6Lp/Of9nf+hyVxwdrDb72SsqKBcXYZ1o16nJFOOLlMeubzR+sOZ5g4fjly2Q8Q/8R6sbBYnu8HPYwNenuWdNGbtPCJwfT1XlubjzJqJcQC09PoPOe4WveOWifchdcUIiGxfWVzXoHYj0xMILkqmhPjp0HPu/u/4ilTWlWUlSKJ4OE11LpvHF8YR9llTQ6IhlCGXkvSJGGvUVxoN7pw7GZJTbOp9TU5ZB6ot5w/CCkQ6Jtlt5Jb4GCchMUPqkXJRqVVejnhbtSK/EKYFJZGp8u8wSq5Ctretn1CSqUuITIv4pvIP8d24PUS3T7t85vFOLp/L67Q2uYW4BA8zBLxWEqzBCzgfOzYAp/U4uufulU+kSJK8Pw9wRy+c+jH4RL5zMyEPyVJDu+1ksBuEkbdtSlPnLTrv4BrN4Qcros9deGRiNS9Pd5C0qQWpzOt73nbttZowTs5ZrmT4sgQih6nCHToshXOoyd9SaVMPxIoPIHcW7jFnaGmUvTDmRIDj6eMSUyF/RjPXQTZPbrxSUlrD5gCsgeTlyvVK8pvUQkh3FQ5s7c4/PoqVfFxNxx3M2inmD57VqjbPitFG9F+WpNsg+ECu6bbBtY6c19rzmlI7KdWXlLq4m6iNIRrroCkGrHdkRSgJAgkycFHmlbZ09mCnE/bhdFXrcEiwWF0rY1hu0oAKO4g6z552jyQSI2ROor5Kj6ozXL9nGbG6p0Czh68sk+qxEyzrZ/CLolOSFcaWYS9gd98GvVtpu/7lNNn/hnKXRIukzNc8KVaQcFzmKhdVC3TGV6bMNNcqlnohwSPcx4r0oFcJaanQ6e4lzJcaWu9yOa3DIV4g9waeyuMUnq/r4qJ0uwE6AMa7yVtXExqzVbGKKA0FLAAc6vwX6Dt2v/tdpH5gE7NEZWcsChJ7tSWFtPVc0G0klWOpAZY+5+xMLme+QUSZXJ6jBlhVAUeeOj/xYy2W71C6zcldWd3kDhUddqH2MalLmNVdgbPiZWRAT+EPWgfrfejZKMQQhN2HTdvZ974YGhH1V8PyY3QnYWe1L8iGZeLt4A/ucGjyl3XR/cNBJAK/X3w5rg4tMuhSgyaJfqfnGtQRzr2r1EzGhqWO85SX8NEqUOPk++L15iRFN+UUyOxM91llZo72ljsWZD4pCsSvLVsHjRx9NkkSWVDKgKcc+m+fYOIzjO9j//Awld4tOd+H6KWnTtEaDqzmKBYQRB79zFRjkhzZHyk26ryS8PLDgBcgs5gmu2d/ZVR2zWvxqJUziGiLb3QrIbJjbkoAu+mgkLhEcMqYJx2HIAIoVGKnzN/yi6yRsVBnwnjP7GFRojvnJ7FK+dB5Mc9FCotOWWKvdAAvRPWkoo67+bFkjxeL1skOsGgbwGfiD2k6bl7W57/kkVAFkYRrLFB3fpLXHFC3rWDMHdpAXBNp74VGoP+3j6vqLhEi/xm3+tys/lt4SHeQonoFJV1uhkO0I7vTmdHd2u7/JKSDinrUWhfCbsQlKObPwk8K50nNub1JhlG3TEOAwl7Z3LVAre0QrwuXpJcn6Z2HJ6eWKYQQnRYmGuZplgzxqSneY/wtsDjpoQ13QmX+8V4bqRUEBxhgRufnluHR3IGdMbuaIe9/l/YQo2JS0pKNCynoY+Yl4eXP6VSjIM0n8MB3vjq90Gh5oy6/Zxl7IoEL6RMfGfutQrsPsCkrHmMesTYDsZQ5fC0sXhiKdzuNWqUdKO0tzaMkr6y8GZn6XX6dYR1KEVpG8keimh86X0WNydYJBn0hDctnerbbShKlmLYqGnWweVySF35tSUgLPB7KO3sRNOJB//y3dSEljsb02EMkT7HCn9fdrHyx6jlJ3Ad9/Elc2mnIxi3C/rMIvfxa5defuJBAubdzinJAb1y7Iv9ElWPRjfFA3c1DjTYkPAGS2UGzeJbSQo/FvPsOE7xlS/X8/ROGc7ywfrtAXiVsiP5SYSPaCQgOU7NclAM4SxVqR4gCgFCcxIfqTWxPG0XcK+SMmeccJaBqqnwlDfyQuMGND6fxfAT4iV4aY/tV035WLm6j9RNQBsYdYZax6HFrCjRWQ10nHBrOA4T47wVZus5cMghS2JxoOeVAkmKgQja0DGge/H72UuMADUG2LMsyUJP26In4wK3bocQFDrHlL8mRY6WtpxFGZgV4oXltjvlXDOmIg3F8u/DgBuUspLJnRR4uLvbAXoj3rkjuWbvQLdzAx5DaEa752WqiUgHzaO1JalpHHBc17C1Ym8M95ssEFH5GFHxTYQp+Hsh3eGbe8+2oaZdz3zS1eSkHZZijw0QxR6EBs4vEg2NmRwPC2g9RnLH/b6WoY7SnIX0bGXzP6N9GLqHKmP2mMkb6VclWnyItHikDsUlpKMabkBpIlgmYbhn7NvQBQeDzEpYw46GGKHBzTwnD7TSJwOfIc7vpM3PawFQjrkKT/ONAtI7HUFfYLm/OKHO/5E7QLqNezLrdVnhOxXpmCpTZL+IEpU6aOy3lFimQGmszKQmetXBVExV9mrZoFtgW9GEYv4JOJrY3PR69IP84l5DonbJzVkjymGB35g/X2FuZ4rNYAYSdNdLCUZ1UjVfziLpyW3XSmh1OhopRBTcWfPW4UCKAf/XYdKEcym0HVBQrNlmLQl1DhsM9Ob5WYBgeTcC5YVgJ3x2vTxTGOg4mICIvGSM5DKBVDFC3RkgNyDlAKiM52pI8VojfR+kjgJfwpwpTrWfc8sYYDtwURaacr6oSxJMyQDSnf70aZjMkosVTevQ1TXyTaS1B8jOCn3akbT1MONOhC8FnkOsbsS0XoC5Qngqx3C8/8Sk2tV1RQFSu/S7DdKLe/bJ6Yg0xel2/OfGC+wBiogUOElpJ25uWL6EvXNw1W+zpkKhesLKTSSVBzTvspxO2RRi7xhjSs2APoCZdkJq7cMuqKm7421Vt5/KscV9RVCqF7v7m6L3iw7FQAipYak9pFrsNCaAZW+vcBUwCrHTc/YvWp1Ks34pvKHazDbzp41DN3UIKj0v/Brof2qHvV0OHwXmxH2bskX12LpJ07YSrLjabbzCnrOR/+VpdTgMJor66sDkP4cNrZF+U0/L/DgC1gtT68C83XCgpZiXVSNqTNCtDejpfXaQDB+zotaO2YpvTUi7DfHhd6+pO055LVAAeX9AMcg3WwUbFXoWicf8o/owZnwYda7+AYeqeNjOAjIwlSzHZr6WP4tuGSVbbdjVM0mbYwN5tjRI8plwIN21cv4pf5iP8GvndSEybc37J71FGYU6higmt/LFho9w32hf1Ea80bh1xzUkjoXKpsUdDvsCISdAVUzXqe59glbpnn6cBlX1etcOEcYQbM/imuoJRMy5OpLdzL1tFSQFxJp9bTnNsBuKDUjgBDKhlBqJlhzQcRMIg5+X99ktxqaianHCTVd1BPzRkulIckmognv47/G+dvMj+iZnIpqXKDUA3Jf3jkzmIY0pjC0m1MImenB5QAYfXWhg4ijSO+hY7ayW4fzMfxrQVXKxGcZPj9+Vu91lGof0kSCk97nKNrZiMkqWpXp0BSdK6jR0uu37M7KoNO1RUvmj+fxJYv6YM2tJPG9V4cXt/iwfvnE5A0NsDQiGs6VHnFMLNCiUDjnjEV4pdCHxmMMfF9EYoFkVgUdPNO0uErTWVrxHEB1wcnuY4l3/Ca/3jzOFj4rpfqO6BcitrUivhszBGEDglmbNVOFVsrvTIS9SUyn1JgIIUdkY6qMOtBBftvbpGGBV8q+NppCTkSEC9KXivEV23+KvRck3usn/KpiXfCLSoMTFbkleSx7GGsdAQ2jPV5DjB6jkdPAJrvhLFDcJtDeWIqAZPpU1OFndJubVtLioJWnzKB5mB0ujAReT+eyUG/toY64EBfONBPtA51ll2lea1vyDAoeOVfSPYOWc6O8oIg4zTvpXrGDhRfO0QI2qe214yCVK4KNEq8Pw/C+lC0q4cExWeeODXvr6e3Dfbg6xbRr2iOKfAVPawg+8g06fSNHuQ1OD5VAEgVVumgIv999hejlwzYgZFA3BNe4JSkEzzRMQs6hzNH0ItDPRmSqDING8VFqiDCb3teg+Y6TZHZgpiLIr0TrbfubcO1KjZJ0de3vFnCsvAurg8ElXNLxUGxy+dbCtK9SVezeGmoWXBq4V858ZkwxTPqfFaqjPhjTK0BgFDMAqd6qWkurb5dF7XHVKLMV6Q90yNXlkPzMIAUSjWy94QhceAupXQaoKske4CDyERx/TlFnlLX0F6Qrhan1gAelMfLGl8UqytoufTOlV8doPHlZjsv8kI1kLR1XBq0IPVwnksSDftU42SthtfGv1663RyCcPyG+BFMmnueYGYlPVnHaVEe7jSnRqxrSnJrHJqgCSK4JGQ4yhJ4o4inwGdEeiVfKKuZXwTD2s1s6D9MYtG4PZz+H+zik3uwtOjaJH2VrJMRWXYzGFJqE/8QlIEPOvZ0rDxZCy3/QZizy9PvebU4gZDjyGaU7sCpV10KQdOg+WZzIuW5O971H/t2q8K7hvrOAyuZ7qcCPtHDVJmQpFGDuUtuCIfAkK5h8L4uzFuVMeygK+u4xO2eUD5/1+yzaA1i0kR/d6t+VEAcYEBhOgw4xg73hy0n93GAv0NHe+9HwqVsKzfrVdYBtGNMicyGiFmgICSW2GjBfpxqtRgsnRdLLafQ2X81xnUpA2ZMiA1u/jbZS3coeZZdFwZ5L5OyFlkfUGNDzaDY7pAxmGvXgZF8yDmihVuAmmRfVZrI0X+wq3J0DTiQQcK67dvWCfnz0P4XFUFOXHacIHM1Zzfgj4c3HjHN0E8dIYs+mSraz+6JGOiqT5PtBdbkE9h3AX4Lf31j2EmWhID4NBr8UjkjiFuIuLIIa7/w4avyMhMzsXE1xeoCra2C5isYeLuIxnP08IfFPxVJKCjB/mGYN6ClQlhKgLppdXSMZa6LmuqrufQ6YzHKXjwoSt9FugIa8KhXeSqky1kBlshY6NAEg2wyn8o8afPAj4TZnYby7yFhtDByPkkdAWmE2iN+KDDKfNDRO/3KlsLJjZDS8JHMj4sgy6V3rszfz3SpPPFS/3j7drKubVR1Xh6wmwVaJ3xUgxn1Vlp7rfWELKDRP70tzgUlkmfvaN5bWujUmnhDIWGYmGaPBN4hmZVL06nHI2h6Gea8fB26awRA+sxOr7JSOswN2pkGK4AttX5AGU0EjLWM5zm8TWhDzTrQH5+Eg76uprlMhS3rksh10IOdLnLFWLbV/Wb6obX8qXm9vtLZTJcVdfYL7tl9LpmYGbOViEbGRtpcBVCh2KHWVFsgQ1Pb4p2YJaKVJZw9avM54DmdcE3TeMPHFApcrJwRnIf/Oy05xiBXYfmRatctI2fn76SyQFjUFB5k/kWzCw4DaQukIzIkyrpWTuxbh5Xh5q+gn8hTinlfKVZ15nN/PaRyBqQOm+sV/2G6toJVm37ASLQ+BT5gI97Y4bVzrfJlOVRX7vM6A1i5XKKpic4vJzUmu9q5IdQzjFTwAVuUuDvou9dljw0LTexnh4g/YEAGlDhWFbKDmuU+kg14KOH0cJUlQrb5gE7KO3kQu1K9Oyf6e5VNsq7HGsSvkPNd4Byapa86Ru80sWHKV4r7k10/KSz48QSE9iq2v6tmxJWLmtbJSqJooVtFWj+TfsKo6ZuKlFapUhU/JlH3/wkheTRnmoENRnecSm3+6ih31i3bEmTPirHiQvYu3rnGVApmfhpWJU0fUbuRh/aFKTscDv0lp3lqUMP4IKxkQk+RTF6RG+cMJJL/gu8zUuemdeLXAlVXFU8R79JOXJ6IEbWhHh0478/DgYy2yp4cYoQvu2ATd/u7oxZdyZQUBodmRuVKXhsUiJd97v7xw75rOCmG4Pa+V5t7WmGrYe3Sd5Lfp0KnThArdzEZyjGjXs875ieIWXJ/UZ1vfUW9eda2qlCx32ANWF8se8e2B8SkKRvZAOrcFNm/fSWWGx8Lb1ieFxviJ04NmjceANVYOsDrrvO1nonQnJAJ+XuaGjEWM1b4Kzt/i5S97FQVhvCMoGNfL3twcwWViRdTiPLqzLoMPGcpRxJ/yTsnHwR0e68pTUmpcmf4OreJ1tCqdwVQ26cygulaRdnb6HY2WGE/VzhQUlQUnv2qxdygKdZ/JkYCR3Uu6UXUsSj8EKCxom/eBXGmY6GCZbeQTZZg+/aFjGBqtfKDZ4T2ZJMcBmZxkBvKvQaiTD3WaLirnravp14lWwN1aUnPMliLeKKjQSK4Ij9tfuqIkbDf1OQHhJTzlh7ftxbV6TgJxIkA+xXqeZKsuCxm39Dy33piUwEQ2w0/oBdCe/J8wdLpKQtJqAZ/RRR2gY7mM4ZsL5r/zuxVWyeq5btCLN/9KEuStLNKC3vldXO8T1YzNUMQnvndrql+5JTgADgGiXO/SHYxAQWm23zurVh7r6vzIS+gTqPP9HQbeviTCSxwqRVPk7BEFcfWciEPHrdP+4edfpno9ur4HKaML/KqmC1HKMCyWqWa8KWtSmNpq/cduD5EmF8K+PGcGxTcENHY67OB4ZuxA9NxrJmA04IR56GCRa9kHWwipj6ofxuYBQkPNNZWbOsMblyFyZ3t5Vpgq+mmyjHpprPfykghPJeKPMR9cCQRViqnhs+9til6AMkiGJfCgyoxmBEoB0TqAFu2I6dd1BRKZkJQSlRa99tF9XhUswzhB28Kesco1qtac5o58AdscYal2cCxfBz0VhXtlHHW4AYTX7mu8Q14klgLnUAOfpaelmATCkQtHFxG+o9FiKPjqYpGB0DalVMoiR/wWukPCdStiHdVG5lg3buQyWbTQALgCYlTJy1EvRSoZ++YijFZ1/4EPX9TL3t0dXg2JgqZMxij5jGtYgGtzuid+bg0UEmA/YHLU+/KK72jlUH+ZJaeKqvI3ti9R9leaaeSz5cFcrQU92AqZ7Uyg58b1yLxWZ0j038zuLw2NKHwYP8nZRVfj8pWbAEuxxyX13j7idJ5VwCRiJUYhsmyz73liFT1eJOy42ZahpFBkG0OiFbnVH2j/6TDqDYhjnmF5rZvGz+6BfXWhzIffwVqK7dDtiWJwsfdnGtCe+6rBPssHg4xv4eOONT50pMYvvxGkSe3OS39eBWjMyuf50j1TaMkHgOujeugI9H70NjuG7Wu3ceS0raB1adDX+laCm9h4C9EQzAYmjoltHRRtt0KEwBcA8ZZCDi/ymJYeKx0+TAie3A4usg/Y3flSwlr+S28IXRH2hmbsVdNBK6EbEuyrpqjMpsXKxmzMMPAfzeVYgKLDUggRcm7LtuxVokr6nipMKnhIwxtuC8GRfYcejo/C83cj3ashOP2IbjbYRNX4CQX0g/FJAyLD7jOOcvKbsMGM4RIFprHk37YqClgwHlQrD7zaRiMv4ua6ko1XIhDCwUvhsaCTmwXc+UC3mpabq4GbowH7C8gIXL5Exf3/KSqO6HA8Nbs6QKMgILrjp9cfwiYSu1sf0YsRPMzNmHYOkifwBxW8Z5zBuKSOU4uwOtGm9EbNwtxrvEfTCwQ96y95xVzw7k4/mt+MP5SWU11PhUYGVsjW4SC3HSfduFEZH/o7V8htlrdZWXZe1t8Plzy4FhTHOEHIsAQMTmkB624vNDwj1CPG96BMQ7tCMz4xRdFNHZ1Fdft7I/9dnRUz36qHM+j5gDGjW4739LsmXqVsg0os7ZwmmI1pv/4hb2WyYOq+B12dfTk2mLBag9eI3L4wipFbm/sfy8wpjoncHFVDLk0+9m39tLqaefKAS5q3sfeHaJzvwDbx3wPLGKfsLHeUKrb1pOfqFewMgsxifNJgTQsJELD2tlnabwTvNCt+2MSdhxX39QdD94DDHhTF/qH0nnpwnP09wHfiQ0mIl70fZzQgjHH1rUO33a2TgAyXQna+B5hbpgtk668kwyaPJQ+7W5Lbz7IoOzQpbuS4iDW7aMit3hcBFeS3osZraXgRB/y9jvKDr0PN7xDYSekiI8OE1dBDYr3wPxHNNBNpTXo/C+9kLa3TssSGPvdVnRpSAhwpp7RXWTXgT6ZXQRyU5DisIImyxeauoUpnIkP8m1O7MeNyd/Y1zL63c0CmI68iyjOIa+pCJ91nPHUluXDCmROoHbfbw8ualvHkoOZWT4v3QAhwqIvivgfqCS0V9SRPXCPL9NqTMnyK4SB+TTbsQjjRiMNIWUCGThpvD1GEWifRVbHWpjr+f/JrnJe2Q74Bn2jq94EPa2a/4C+3Zmu2pEi0JedPRDgnReAFUsWmiFFAhFtLtJAYUItvifhcU9iF8DmWMl+OY3bfL02cN6U5nNpSa/66MIM8iB+vFbABmp2PpkbN3SICPn+oHD/AHn8acsyZehvqMW4qUz0zKEcSsgT7CE8Sq5mICn9t7fbuFXQ3BvJ8GZvo5SfNMwszkc0VoUPO1digxIVCGYlwgqkpicdMVefuph0Q+AMkvW0p+PSeqLIav+8OCIvC2kFL5loW/wq93NmxzotD1jdJdAbCOpJTgGAeAZUWsBdLs+w/F+7QarWnc2BL6ACAICN5YIfcJ7ZWTHGBtsl+ZTfVKJU2xbp2nH4fFeaV27RQp63BCOMAx25cCoTgwtV6J8XnOtPwTaOL5ZD4GWst3f1JpWkMngVQvSUT2GwApJDP2o92hi38VPEC8SK5sFEUSKfdJ1SxPyeRAIQS3NeQXP3qtQdkGgxOcTYWe2eXewnR/1aCEi1HG/NqoifHpQLDTZuqUCeDjeFHA2DUnaydRkboSNrXx4sM+JkduMlONg+5M99RyC54rEjbAyj0z+Jwli9/CKT5WXAIg57oXMgImHObF62Zi1FcysZiHAifzu04onpYRfnRvQidQlA8MipDz7vx3/wf/HLqpghoOX3OPeSIXjeVLIvCytpIi1t1/HGhynMQuSFsbUd5VU4TCV9lZGOE7FVJXeBWiJxRlkFWgHlfM4uPLM/u0yUpaU6e3lD1lNGmASavkJz5SkWUQn/DIHnKxHcFZdlwJap/J0SsPBqYaChI+XznE5YBVwJa1MYGiGPx+q1Sx4gFZlfuZG6M+4g54dkH4F3Er+TnETIS0BZp2Ox3Qmjc/J59bta4TEuiA7aJIgkUjzByV8uXT5H4WUb+E1HOAMu5hTz1FBGF5ACFgN6Hr8f3KFPk85/aWfM8QpkuA8mz5MQkU8vW62Vr/VW0C/9looyd8NcjNVfzlqNYnUU5qk7KQrMteSEWvHxGM/JS+Wh4tU2XsgvuW3iPyDiGIHNJ0l7GwHmZtoZpK6fnTaek+IqnHLo2j3M5CiTVIhIkU3KmE3Hw6r27O8FhNKIva0MU4VFax3SZFQqKsF6r5NSsD28IVgKsSk1gDKhTQbITMKWwWHZvQ/fjqsTd2tt8HIduRZKnbuI/C6Dfqi4WuUH4G/NQXNnPEEoI9t5uU40UESXn8KXNDEqYLtO42aC86xSzntQArs6FhZUBCflYFtgl2OW67P0+Pbo5+gy57rEzt3dc1QS/9RT0Etpu8ATz1tLsc+U5IaLdEWJELK/kSsSfXT9r5zmPvISvmvnlOIxUXgMdPD2p9M2VgHbW+G6hSSqIznGECFuJWClywSGD2mafi6w2XJOGQnUdRrvGJM2BOFLeJIo1l9vf0KS31P+/PYDho83swdbYF6zLVwGpc2DJzhcALAMNHeh4Sl+qwe5mv35mEblqtnDa/d4tG6U+Oos/Txw5qTxAIbqg1aUDzmZ2BBiuasoOR897fbEOfnIDk9hnP74ay5se9UlDO89de1CHnvdvoPaSoVFTKOPZm0F3ohkY+LtaZlyn0Fe8OYlceIiOLEBbVVvJAJpuZrsgYet5nDRwtySURqxTrbCgW3QMeR3WfBPeP4OXrlz/eVvOUNSmmJS6CALa35Rr8wMrT69tG1QEXg8I0XzoyPsR3YvSqvDcao6YihZOY1KmUsTdMlhM/zPJ/cCQ4VoPTa5UTv4G0mSBMkkMEPmvHm9hyCKdM/t8TjZaCAICLVZWxw7240p8YoyAL62cPJi1YntAr/7XnNytByGMvzuT0wYRIKONmrYbCoEoLVnTk7HxxOi7Bt4rOc1YBPNZMW0pTG5ixYwSBfAhWhGPpToIGnUZlK2TFSFAvrSgUFqrPPzi+yMQh/t4g483fbcQIeNUO2/P5n2K91T7PiKK0jmDiptfeQzJgYHOKRL+igkTT+0G8/nIUsX13hLvFnNqCvXw6/RpaspcKUV093Y3OB2lJTi+ZssaJIsbGCC0MwYn6j4pQE/Mmx/OSbba1MVYI/o6gCJHHBwQA9rah52IRpHS5jt67NS5MS2QvXuG3SaNYz+3ELNVkxn2PlZ48zQeTfH80lNz/L2LqA3vyi7HADeMqmGt2PFb0kNjqpADU7zUNLI0VrJ1ZJKYRv919kfWuQDt4Wm1Dw0N5J/b5xqj0xvCrSAitE2m5kQRgc3A8DD2I1eLRpQRQTtvoHmLicV+zF66UAMUQ4jwECnnWYUR3/vpYs+eYSVpdTovUwaJys00xFhoel9xEBxXEA301HJnoyeXd0D48qxE88nlpk+a+Q1+fBZDTFO4/tdrS4LSsNtTi2cdrIx1XWPNtByn2MzoWmpO/oUkYNvSROpACDEy+WQYX5sTofh6rNztimk4D2QKb3gLJwC9OLSGzMwxSeipFh4suJaZX7MiPH2pihcTCVp46B02yFDsriIOuy5lsSABTdWQybgdGnR/cNFHP7t5w1ow7s69OeX+4yX3dkGZHHUgv/gEVSejmDArAdLVxHB4k/OESZi3Lh/MCNfGeEqHsMI/Woqjmwjh9RpLHfbux368c/TFLP0D298SeccXK1nPLk4vSJJgW/7rouzqtGmHHvTKwFU+mIMq/+tTl72OaSA9HLJUWEl/25q9OAVruH1zWK43hlxj7yUBTvjYWlLrEVskU2Y87EoijEvPZFxmMT0o6wG+4X4Ajjm6KzyezvS1ba7fNTVOzjGzXvhuv4iy11PYldWVYJCZkmai5jheSb4lCqCdhmFN3n/K9LIfVXBK5tNUxaP3jD5ZKMmwDQZuP1Fh3LDEV/Ph7xrz/Vw512ztd74W5wpMvLtxwaLhxd9itdfUwt6uvK8hAiYZB6S5PlgIgf6+n2geK+tVyWNppDWcrsBvI8VS8YEtLePWMoc2fZXomzSk6lDQFtWZCx8DZWmEiCpeM/+zbi7jZ3dtcWRa16nwB9UTlGHG5+SE/TQmjRRW82h3AtMcym/NThle3MOMi7/dKLQYC1WM9zE20VwV4NCY1/yvzWo12oZYFik8gg9Sdc9qArzUySRM6HDMG4IwVDH6MEOFW8u7MEn+rU+8d2/KCsMhi76uYKqsRlBgc0B6slp+yvCuoNILZEtqXDlnFV1LxSPdHFiwkYaYB51iFTAaXjvIll3JSymh89Z8KS1hkbOJlFDAdKlVPMR6xmMsErIsSMv56tnAcUFEIMaZogbQMtB/K9xBmt9zpgCCxosSgH9gaYaRGfHOlBIeFrrGafW2yxTdZMoN0sZetL9xzquxK1bsZhfo/MIvnvJedkCceG+F9ZwfmBg0yl/tvdqt9/Mz9JFuCQDV2NLXV97pgQWaKSlxc8R4PVA9SR+OwUcPSr9K4xl7bbZKP7PgY2vC8aPD8HuOiWg59xFUB8+38/f9Mk9KlDByiSi33XIAv410hywQzSGnm8YShXD6o5Ta14P+6Q5kYDiid8M8VUlVRnA75VmvYzER4UvaeViWpft053Wpj7h/rhrq7eIxlK5ALPEgycQ7Vtmy2vorE52O0shdMS308mRHrXDUe8O58CaUE52E6+s7ScgLIsMBJfHgbC5O2KI7rW3bHI2wIGWQr38x1WCkZsbsevOxrKdnl36FXCDzhynVC90piD4YSXaCFyqtpTXoQGdRjXGAGLT2GJHHnQ7a3zdYKop2ff71JaFScoytsEyykogRFHvSMwvcS1hjKoeqOe6b1/SRFDubzejXoduLekgRtWrXxA8EgNybZhFEfzk6rlxHtbrK84TtEDMltyl5CO8M6IrrCT5dwfX14oJkIXWn5X5VGAKFWh/WCxTNc5bnVyuk1HlE+ZM7JoCyYwovhE4YPbHMnaHfMuRGziQ0n2/jUasQxDNJ9vpRv9/CA1lLFVWJmHdiiRTULN/bO2JIAUyp6xTWBqUGO/OMVRBJW7b7vw+p5NFgAoRPqJp+C/ktQFULB4JXoauGEVEcx7xIODQaOWYybHadegSKKIngJWhY0bXDCpPZV6z26+knDL7Jz4nIaRVGTkqaDjd0iQDqxoYvjTrletroCm1/gzppWB1tWfrnX5EZPQikzhquyUH7Yt8KFxqy9VkKOPzalbEv7ANo1Jec83oA3K2GUgMhjsJ1C4DYntWstocGZfGk84DgAvbj/z7KxyzzWE/2Dwe4s9L9nqMJt2EPXxRsKjZ7jC26kze07TwGngz6KfU50H8nsaTaR8fJeNxJoZv9tu04gytwXUgspWXRIltDi2MGsibx3X2zscFhBwnIciqXvxRlYLfS5YjiI3Sh5gZdEDdPbNLqTkN4eMTz1rtLr3ZxNPixkN0NVnogAS8UiRUmudJClmpSsnk2DWs1m0fLKGKT8jjeg6zzWOB1WDt7NP25Xq/CHYY31zOPsiAqK/hQg8CgjzXuJ+LROD3A61GBg22NqcV5rLajPpGH6NTSG83aQ9I97WhfcUBNOVKmNLPgXjKnW/MWmMEzTrfs5cKgWJapbJC2CMOSpLUGh+6L42L7cEXe8jnRPoqlvKzXe/tA2McChCzmuYZlEPNeOcH2UztufwMV/YnEtWSSxeBtRWZumPrQyqxkZ/NFjK7xY8IQ9q46hLNk/79I9KJOhYuUO0M0JKgpFZxtaaAwbhPYLcACdBINFtceAepS6RMkQ8LLSms4uxWzkOVXO1y90ZcIgxkZoYkhRxKCuctnTMZiDWdwGYjuiCk1NAJd0X1J2v3kWVd0xWSoiQjXx+gE4gl/eqIOBySEYbyp0YDo9EVb/06DfgIJhtLwnlWlJZ2tsCZJrWojEIlvf49qmfdTaNvo4Z1hlz/yYqy5RlLYrW+XmNKgpYqAp+I9BoA52Z+8+S8gmYAcW4aLB9wntsY4ZA7WesRbXh+mbDb15Ud9lNSFLNHW6v7P4ylIOPUVcf2ihKY/YfYCKvzXBgCSLfBvc+ns0Ezv/vuwIz2iEkphEXud0PAqGQlnxDQwJoSZxd8jhVcCqHrwmAIWZnf8D4ePwJjP0TuIaT7YJF+Kc4xQ0iSQ8pZbDEnvcCK/c4d4yB+eEo+DWPDzZfhJngpHZAYWsnGlWSRDOyVBtv5Q9sEDouG3s1KroZhUcVJNkpvXkeufBmfPOA8Ikqr8Hkdn89GUCKx2MOTbB56wVDqK/LH3IVTugpG42OhnT6GGZ4146D87ZHYSYN83J57FqDjBfmIOjI4wmQ6lbSMYHcd0yVXLCHOcGv8ogxPRRVaCJRD7p23AX6jkLNSdzTtxXhobyxX+TC1X0jGVB3HnrQplHCznk7SXvq1p3BP0expDrhsvTM2lcXG8DnG9HlBLvHm550TBzGZ4PnTE+UbLay+bZB3xvbOZZemPPWQxsIqHr7qMWSkDIzUBLl+bnzYXW72qewmhMg4K0pKEjnXQpUAZT3h//BujS4jh/P9g2SVRX9vbIRRFm5QcB9YNl/dk1wRNcDm2jgcPxp7jDT+vPkSvPOewBjwh9D6rZ6FkCA/0zxjRv942/H35almrWWdaLOyP/1ttk2kGwq44tRuNYjlkjFNdmZixvuhrHC4ZIhwsW9rDYcnINNuWe7US8EAMpU/LG6p+YBuPsSPNWLAiXJnzBg3PZ9RIWlj23sDPO3gKhmwlHVDgLXd7xR3C2jyG+d/VpLqZuAWzE+9CRc4lF3oOlKaDurNc9d2/hnndiDpW2fwvuwB7C7NTwZIIg7OGbuLTQLpgdqBG437zHqtEWqwKoJWbrERHD25lIIO4vGTsQWlV6IOj3/92A0v0gktkm6t8Q8ptgeLH5bFG/fdQBlcm25VX5msfMS3K3q/NnOK0o1otFVBDc3TlEEneolxhzBwaH3SBTE8ZYhm2qqCSv5CRJ9d87Zq01bDNp/QVcUksUT3E+PM+09+wMGUGapWkK9Py7GBazE8ZjZu83AQNxrYRM98Cq9F0lLh0TlWaxXt3qZJ+bKtzDJ4JIDV7oWX2rrTPXu5Y0NVX9IUk+tJ6Ej49FRMT67b1FXv6OICKdKiCi34aiPKmunLyKXUMVI+IUOfFlOxkE3yfgRwftW57npc5WBxB0FN/DAzPS/eRIw/t8o9anFJq/ebpR4Wr1bDS3QBGbMPWBrpWfvzUdol1qqQNowqC0WOjIem5S1f3GGn7e0We2EHDV2WgCcbOvmeFL5+RLNrdl2K18qMLELQqptaoHhazsU2XXwGT9yN3OCD7ACd5AcAD/CuIgmajIXfWNXkUVvJuMlK6TIr8oueupU3BoelHZzDlH3DxcsTumhapulkrX5jdEalr6Gs+xlIdkLhFlKIKJa5SKDduaGRbBFX78aPYaMjb1IBaPhTpWy5AWkNiGNZEu+omHCqhmnlf9DGNyIkP5iRxAKqyHQ1MugTDGl/fAB/EiYxEz3uY+Mqs7W8gNGMcR7TmV0Rl+My57xEh58RiK6HrmPfnjDymXEbDT6NBKBsUfhx7syMy67LyExwXWqPi3V/Wk5J3IxcH8q21pf0X00D+ay7NvBFQzt8VI9+WRhiaCQTBSK3i3P3zBMghk1GxOZQl3HbHKH9e6dWUgqtZrWLvMM1x0M0/lB6+4g2qshqZzdmFeDB9UcLKCkO0Iv6jmmaDvfXiDFeORNVXuy1CSPCr4j/IcBo5LSJd6uH8+vNOKHDKTaMKdSZynU4eq3xvH+eoLtXa0BNExjFtRxvCmzVDDMzF7abnnQmvj88Yoqkc1ypN5PAN/Lmb/KmhFdW6/o1j0G3JmlRtSikKzAcuBK7pJCjXndXnuGpqACh93N6ooyC3L+sUToILGEKWEcwCKQl4WRVlzAVPxBt7/L03qSD17WtKSwsjjKqBe6F8K0jqy3q9TriwS1ke00sEst2N6Wma5sw6SD5FNlK0Qg+OIABzd74PSHQfnegipwBB8xQP3xYshRl8kUVtnyQVB/+oW93vxabZxaR3/fy8yyPMVTxIQgOPMnuSu/Q/KIbnq/raINjR3uViprc2VlM1ViBHgUJJsOtuy/CDcteOzhp/7Z7+Z/CYKz/cGs4SgDyavpL94GCyqLgfc2uiNRZ49QmGSy7B20TVxrWqKGqYzxaYa1AD2CLdUPzAPClq8eu/hXFAEwJvXQlBPiJ62XPJ+mzrgAAahyNQgaCtnTbzX2fpelkFOE7RkJOCb/a21hCq4BMv6PFXzjJ4/QmkgnaI6TWvT97LpbRyjkB8DqGNzQsy23huDfVBRZORMxxB81bc5QTgoYCwgnksqw36+rMGeBRIp0na2r9hfZMRu9D0rKccY/alKd2Z9kcNF2/McUkBUq26nvtyPcY/4UGZxTHxEJ1W7jIUrUP6pjPBd25wi+p6HMiwsaKrC8QzjXwR2WYaYJKGJ7wb/vEStE/Kuq4NoTas9SAfilOmYjqV49TnfUiLb+uHf+CUs2xDT7Cj5VyPKJtD6DLZBb2Fj9txIIQ6AsfL+2Np4RIDUeyxfy7D7SqsPOpHQMAysNQ1AeWcQJPwZ6StZyoVj6eOQyXrqeE/THFZHB7xrKfvR0bpC1adJea25NlcAGGFBsUEr4Tt/6vfaxB6QqyGHRvxxZnhKyWvS8RfvtEB3rSe0l/U7+V1snQNY8flvw+p/PQgXCmxSmp8dMb0DzdVW9pB64ennvK5+iUW9kUKNxr0KeclROm8btFWUkFHrbjiW2ACDJsGJDMO41esOt0EAt+lYhfapA3Ef6KPj4Wx5SsKMDJQpcD3O5tyJBeRZ4xgV8Et3fAmEWhHGsXQvOUOyyvXvOKpI2lD3rzjWrFdngiWIUUKQAdZt1BiFwPYyBdrZ05tC8MM2xS8mtqdpjX/QQ1y+rWpX3vZodrzfizyB/exmwxyPCULC7gWfT/xq90bZi7WFUevR1oQJXIPujUbqcVESKjOV84Ac3X7HVZKtP9oJb1on0dQa1JTcQZH0mJ4VfmTP8JiOzkOs6S5UrgzDySzZrXv1zEF80RYBAhKdCAFy16JR/xxRn5L8IgIi6qh0VTfpztbfE04lPBokwLmlwOKbH/fXphKvxE0Io/v8jZZaliBeb1ydNXnDuxk+uigmBrIqOgaU9340r3qNLVy4Rcnhs6AhELd7usj+B208HLD/oVFQZjX5kV8fwV8XK9OuIlWU2dWu60C06av/ks1mEO9m99wX2eh3YGt+Oa37sBnZxL/iATCF27GjlubsebElXrOsG0AZrrUxb9USg7WghVobUPBfQBFldIKb4WrAMGjpVpnnyxt8wN/jvNHkdIlpiebvTko43YeY51zZJY6Opll/qh76135gj29iUDxnsxl7EdHEpW5Wy9nNioKifB2vD1p3N5xTZOHcsW0/QOdoS8PTtWiAlOgw097y8Bl4bXdu9CJMM/XDNrd/Q6oCDUb1ZzPczdyMLTEwVFH70O1KCajHBJbjhvXlS6aqZW6JEqDnhZvZubCyfx1AY7pFzTDm/I/7GQ6BpKwoLOgCPNXP/hSEMX278ve0kA17ZJ9Sx/mawINAnMH2sy/5JbWCSVvTOpexTDPlLb36NIAGesGx+VTnNRUDa3nrEq0je+Gn/QVIT6AVELnhUDGmfPMKqIC4kd0FjrR1Qz7cMH1odRkPq8wIEcGxUI4jhXj77q39r3Z0Gmp4HbCIEXLm4c4dtnW+TizCyuDYg3K6jK73wVA76TpwnM5KdTgLwhwaGILwyE68yU9Aaq2W8sC4iopvysTneebAbgVHlDRogGZuS0Oj/uK9vCUCoicjJyQapbFM7N1J2cW5ot+oMBG8z68SNEtqrmn/OY03fx6JHDgzgA2+czEaH+UEtNATkjfI1qLgI5ZPMI0idQ33AnNg2vr6002JYPTDQ3kTsQcje+v6VIAeWjSmKwljIKPu/mOQ3p8pOQdDXRg+OgI2RAyij+gVMLIvZL+JHDyGfkim+1VgsPbu1IYcLrfUyjlourGs7wphQDBN4WUdzZpedHaSktub0PpgzrqPh/+2J71LG5dgjVkZGDF4G3qCKb/uJeswayq8UmzWqlQqZ9uCegg1uK42NbaesWiO3AHWgILQlR3l4L438I5J8X9O8yzT7zDRVzTYkYtKrgnUUao6ifjmzR4jUJdDW2qMUOddWXHKEQz0904ebBUrFaFlR79dHT3LnJOPtPK6UCmlh1WGWPhrnc+lFVSyqefgztt4wo99MtxS7GvGgL92APUH8ekHHOM0fNsyncY2FlJOl8BTg3URlOC5HVKVqmQ9u1rzoIkQzDk06wMvRbVWOPG9tGp7BNd1kPuktbiotebCXhGiHx2CdYGinWdr8MMl5IfU82uc3qjTEi3QqcK7u0EHDFqYrVxzolADTeIGJWosh0rpshNksUC3bXDAWQ0zlAxTYYo7a43NBzfVbjCOzAb2CZZfLbdR5v+4TTPoUD5zD2ptKXmmXdGtyt5ekebmyuJqahghUJeAhw54FtZncGWebw/h1BazUy4yFyuGaBV9W4u4alpsbHPWlW1j+h+YiRlMv32+Et8f/HbaDC1/q4yKdIt0n4TfIIxViLrHZrVzZvkzwO23hNfDSZrq5hTDpafBJhGFUoQvrLIe+XG2prYM4zYEWAjRSZtkLhPg5iprynCfkaQJXbR12VcweotoueszwSSbzt84WoxNc6WskDfGeRj/pRZt2FUTUTILUIRrL1KCeNdp8sDvgtex5jZi4lrQXFPuU29wF7+st/ETrahIUWGKKwWLxkIpK828+NaIEdYGcXpM5C1jkN67PTHna/VzThNJka6EoIsjZKhwYbsGFFl4F/70pYJrAvGp1SzCmD+qi29oAE1F1WVGY97XXykvqBTueKe/d050BLi8PPQyvJSZwstRFcS6+SU5Ii7sRiSybCCGQYILJGijDJbp9lqmYyz8J5HChQxiKQpeaX/4eVSnhyR//7BJCOTz1gYsJKCHidR4uHaxaP8g9Zwh1cSOViwx7D1DqGix6tF3PClKuQ46ueFNkGzLicvTYQCWeyhXHBFABdTMbzfIj/0PsXWVMChDg7eHoEI4SWC0v7GHAUMIzKJmCxOBEABrHjB0spGfPj8aBDUBPPdQxdcusIm14pLHj9eKAzxDqkLHqjkbVj8a3pwEZRwMIqtWlS0vQoRi9ERZ/Pl2eCdvFAOzSJlsW9nRruBXdKOWMlqqC/XXycZttQhML5JijMASl6CPrrsDF/FBPfMh+qtsRK81zxbMuGRlnSlJHPjbTHUuUPy07GkMLapyAGkFqcVqcioYr9JiJxuIcfSS9HC3oTkIakspY75TjQ9rVLVIi8v/mq+vOzpdBEq9bkFfPXvoYeGTcPXbDThLPGe44MF4Fh7WU681P9o7pRgBOqVC3VK/eEei870gJqRKgMn6/TQ091fZuIL4tgqbMWRADPRcRmExnURIKDnIabeWnW+c2k6W+G0KoUSV2PPe9XDglxi5CQ5jNn1jU+vcvrKVAe3W34k/gnsMl3qXNKkhwvdEy08dcDejGTwp8XllOgTBiDzdzFL2TzpTpjhk4+TzDXceBWJsS3SYthH6aBYsMYf7zYaq+6dbB7NN2zje/TNGqk669q/9666KIb0vrf/G12CCBX23YEfRASWN6e6ZQuI2G8jYdmp+Xz96BoCL0g4mDoxMSmGNFVTv3YRULAXmGo8AsYICd8siHRJitApfXMDdY9rzLzmMSDNPBmwBa9XRjlziQS6b96OYsmNQZXBpgYxsh+4kNI0PIR7EmNrYokYfFNNwnSZOD/Iyk2yrKYmDyyj3ZLEgbgRW9KF7OMOdQl8IalkOiXZlCgrt8yAqfSNw+OvgES4/Brz6mrubVEt6PfrhqBtT+Vo0aMw9h4kho50oy37SA+IDt8vnHqjirHDyVbO1koYuVYoDP4Y6Z5ypYPswncbie0VCUl2IKwsk11kT9yrTtNlL5xHMOfUT0DXuLoq7fKinSq4Jqd8sTnuzadR9JvsxAgllxjm6D3us+siKP6/bCK8cfPI2ZDTU285KGQU8WlhGg7WEdlqEhrtoUn2L5dn/AbEO8OcGEEi1LOuc6XjiKyEHCk6YsEd3HuMBv1shZa0DNB/sESSG65wICTGWk53M36iUlIE4o4rDxRoBGUXCz8Zu4BCoi39vCXNp8ZrgWzCNOIZUMCJN6icyY/8nWg9mJEAe6iloiS4H00LLVfY+Z94Mvnz+C023lOv3ihyBrWF5W3GehmcJaerTvArVHFI/ahSfeyUX2OLoKr+tUG1sGqo+n0bJg83gsCViHtJ2ZPUVwc/CLDNzMI+OMwz0hfTltCI4zuDaVeD+5iO8pfXaeV/RFG+wthYr7MUq0f+YoatSf45S5vfku94wTIic30C9WGzXc/UasVpkeqNEm8hvTBIPvv+xfPaXBus5wpsIvTIaE2Wbe3eyoYm6Xdlk65otSaE0N/UJBbwsRPgruFvcCcNTVio+K/Wgdx0Vr+0/MFMtjBsm5Aiv7L53abgk83scAcW/ZuM8BG/yYT1YBrjtQIjfr8XN8JJoJZcFuE9j74cUjgcW3tZrFAOpfwp1PFyWqGw2YIQOZcNMEtGix1LlWx9cp+UNMZ8rr1hqOftRqweN5grC040jsv/sbjVIPa66r0k1y7V8O11PBclasfj0QcIgEhbFdACsE/V34TiC6f2HiuKtm9x0s/+XI5OXDh8tDYrJPYQNwj9NRfEokX+rD+1902e2c360EfL0ErIrUvqMRA1W1Y8J+SrWkXmHhtmbbQvcOMTXqC4VGjSVaKNq8zh2fl1iHNZgGKbFpehvgzqV8d1H/9WLG2UWzwWB6a5YV3MoHqnSJ2+qBpjVu+VJGRaWOzSe+z3dHdPFU6EuHjWtMxPzemYSS9/+VL7W5p+nJX6m6s22zOI/GdVVcuCkslNXWEjJjdXvh3h5/s/Jr940wlybjv73Z3o4RSzpsVr/2EgVIvFbZlbE1KFTWYENM9xXkdGAIitqB3COZjA769349ybO6xFR8T6GELXDgc5LW8MoeK7kqi+oiEBQ9AzD2JnX8S2tH+7hF1tqxdALqaaLDA8V8rXz5nie2Whb/BRAODoDEWRdjwZOWQSxzfiacW2jOimFdfUSAwEXGFWzp9rKu6kUwNZUZ/VfzvRFL77W69hSf2GGMyyZWotkA0Ew3Lk7t9CaLRgOvXGOUreCOoBCBoK58ezAMSfgcFgt7gsCrnQkjJJklHYIFG+Bv7AdsY8va5EVSLh1vgTzlzu8tukiuFk6u+bfrTOKSzwiUtaT8rWkXkz72gSS/vOQRrpscipCv9p6H1Wwx0UYUZyTqwJEW4ehpv6LbJ/U6JIMo1kRVilFx21M4auCM0DKkDYJJPGSCzl3wjPSaYZFjutUq/hBs2kSV0pdgQlwI9JL+61/Xaq9Cn4u8+TVCgD+e43uskbVAtyg8u3vWvfLm7z2HR1jt3id3ktTWvpUSxRuvw8TSBXqEtt0Ha7XBZyHjz5ow37FhzViXB0w7lfd5MOhcsG/Nzgbr+KgWoPk3IViR8CEPmKRLAjX7sRalDrL4YwTB/KMU11Y3Y2Mwa66N2FNUl6Xp9aufgQ+J0BT4egqzHV0d/tLY3yTVB6nxrmDrrAhIpEfYgoD6kL67oElCrLPme/bsIGVHTPMDEhxqN1GUN8W7vyktILLtqWtlfOMQ4OBDWziOeulLzjj7JOIUiUQv8/eMcHaydm6ZQk3DT2tz+mzFpOvlBFKdM0eycjihbhQqxJeryI8nt7uss70tw8IvvbqqqSY0BNiRRfL8XWLLfMIuhc2QueTTWxQe+M2wpSyRD/pRo3Z9qQZgXILsMTGgicbLwQAhEgcqjyeSCL2WWOO8sSW2C/MFSpXJzDQMLXy2dLsaE2nxYLMZV7UlEz0r6fbYi/F4Poch7LlPyj+guXTLNhS7PcyS8w18Y9yXvRXgqFT4KGPb5HuAinSvXob6BwybiB8bLfjmZGjHQNzC6C42syjgajujC1TxomcA9HEoqIrMGB7OjBnl5Zdld3bltVQGc4Z2BqhpkoGcYqZma6qIiNSSt+GBxNjjn9kaxkWRAX/NCdPsVUn05kCkJoAL8ni1Q5lGVARec00o8EzoxdoBygur39lV5Lb0GdpVZeR9eo+709wvx/uJoYTa+RzqmOJZbFX1D3ppNnOmQg2YotP5njoEgRfU9CL/VwpBBxgHlvhJywEAhla4YWeQ8BxN97B24kVGLbHXBv1iYXQzqh8WnE17Wg2V1+yI7TMoLw6Mh+VY3TRjmqd1v8wLyGwS+FGofPRuy+2Gq4X728/J11gT3P61gw7XoiD62lAsZtPq2+DDZi78gQAVwuL+QEJQ7RqJg1HeD9BOATZThIjvhboa8BmE7OPK5r7zd4L+BahItpFm6dA0r3qHZlWaCn7qlWlB6CNuTg5DyLTeXokhgaea8Jl4vwqrfP+sTTkSLMm4cIsdSLBQrDhj5mqp6iZwuA3kNKK9Lz2DnSCPe7ThrT7RUSW1khUCjgvslzuCkmwqx/wM9o5N7iC3yr5Iw8cel7TSh1+blJtqBivcZJ2isOWaa7r+ce0ibLRDUgRGmGU3ipXXNhtVtw/UNaFCLFY8+9Q6k8O4BkVWgghtU3TfHpDZtDG5z128xpuzqa02tx+a+qs/0xLZjD7ROdcRk0gnXD7vq6OhU82hVuB9jnDp7zPU2R46dGBPNjvSp9c38ercijbgYOYgXlr8HKJoz+Sg6QV8yqsN9iGc9SltY0lx/mMtuIaleRBiql3cXBWkEiU4pmoF3y2EP4IP+VsOQyWAhQYMEWoLSGdOqjsKoUz4bU8uPb7QHpmjMIn6ZBclDB+ScH6tOOiySAkRs4S3sqYUJ3SxqXkcUieo3UByF/+8zF4CLmwdIe57Yl8xJofGN0wwFnmpt/z5OLxusvBcWvqhqs5BCySgjPeBYjMn1kOKvSam0bTolWTW5xWdw1dYnMyyh8nyNDXFHEB4Vlfef0/4NM2yTn4z3HoEi7q5GE9r8Ug5SDss7IB8ItInYwLv4mAGxxoCRE8LSu6JHEe3jBW/HR2IrT1aQc7M4D3eXWl+sm99S+FfhIRFrN822xWR16++jk5pDKIh2UbVW19+h/YENU+tvOIYpPbQHRpF3wsViykDBp2iXL5qrBWsHcsWfLruykiozry3+hDIusFMw8dog4vCWPbnZDmZTYloKWRrrBxWL9Moeg2Do+FzcO3/zDZVa1kypxxx1/hPxPHvdzuS3UUMGcSUwVJAS7Akjgxhq7NbLQuD/viWkoQ7MWv8F4blMx5RMXSx4lvoTylDOM17Mikz3Q8EusHP5PbXELn4tJVZ9rNOiBzHJBY3AEj60ts5wizrp5SkkVUjOwKVL2X2uHAdxizgfQqYrx48K62a362wpYrdC8YJP5RsXhY5X/dZoe4lkDiY59IQfGR3IxJxPc1PH68S3R1p+esjy6Mhm92Vu6x+cP9X7DhSp30LaqkGth2XfnG3+Wh9S6qRQGtWm3GBHP4IRy/MYP/rutMreusnq7Wt2bPIu7oYA60HsD+ipJxt3qjDEcSqc/0d7FyvcKOw8/uX3TBJGesOvRz/fEM27uiE2Eo5oKV5N9RBqVOvVyw4JrvvBVBA1tcKfE/mo7W4hREJqWAUkb4+mbZMJ3dRjzoyjxbQGY6BcLPmZVgyi/EP7DrMwaOY9otDkw8a4y3W3sG2GNjPFz2WdlSpaNVbXSSrHvJKmXLj/vs7H7XC+6TEienl9AXhwqfyy2SABa2SZ0C/mJBVTI/n611+kT+5zZbkTK9hYtaDSu930368jNAGYBsiafjK9SE0IYNX1XyoSjnzaxmogC/j3bBkBRyIcI6l+7NT0H3PljsR4jQPFLmXOjL3QwTAKwW3KnJxxVxNo+9bf2697H2Dl7fv4IZ/aGd2gbWn9vCDAUUFiPGUVdSTFgxcx/y5DxAVgjqzFGjWgTvMLc52cK6RSCHeIIBxA01txqGYKhCkVHZKrb/MBcAvi3vwcY35ttNYTotSWUGWA4wJ6rs0VI42Uap6IE5sjSkL8ZagxDQ65DHWLpj6PXX6zSXSHNEvn6OuAUkalulshgi5syLVuQF4I3uGz1O0lIY3J+5deYtFS13YvHPOPYq8Sz6EfjA3ZH+6gKnTqcxjiK/m/nzD3FwAlul+R0FtlDlHRpBmzYwTE7mGDuTrp8x9h5+9++pCtXxcoseHGOs9btT/RjfyuhZHRe9HXrTTvs6PpK/PkEgn7L/N7nRTTe5L1RK30i+Ntomso9q4o8wkSli4uPeDbwAnBRaZO451FPrTTtPZDivGZtwaoJWggAvIuvnPV7xS6KAfC48AufvoO0PoYZGpco2pvVN4j8mJeXzquFsa8YwLOr+v1ZOmlbYWRo/ReUj9b1exSnBqtNzRytAEK6LLdcR/Q1IJKYFo95qPOiGrxb6njKbvOjI7a/9HIgL68yAgwCMi7XL8i7y39th7/jzsdPykzWeJTlS82/UhS+JPMqrIqbtw54tSiDUqNFh2Mf/rPn+sg66xDWl5bVlx2pn0pgZyWtTZd7XxmqzcBEl94k7SlRvR5aPjSXFXpYmmUru7XOITKDdbviZRQIxa9yojeCLufIykDFpki6mMaTgQMBtwKrxxVil9O/57gbTEJ6xhXZhFa5w/TGoIK2e9Ujr1yjuktMPQf74mpHJmaedxHTmKdnc89lUm8w/dPP1X1FdrGmI4hPsc6Dcsi34llxgH8ydQmwN36sMtKe6QXvsRrxbqbld6719LvIcZKoVgU/7NImxGV4ILNd2kjiXLDBy4zkXqCGPtff+urFrw4XSO08By/HefIYahKeTCyZet/0vUBj+48zpqv6rGo9x4K2FJd++jT4mp6ISxToZPrIIZr6Jwik0gazM8RMnIZf1RcvnRdR36nE7sCN/0Ca9o6HcA3gSU3vYbMxMJGAMjLLY4nDEenCWL85Ef/j9aHYIFnxNJ8BMSixVBPndmYtWb1OpWs10ijKhrBb21Wr6psD0/XWl8y/MzlQqjQnGEgL+iNMxOmXvATBZYPLpp/XYYthB/DD2Kcc2tpZVq1P7CKKU5CDMJnTkokxsKeJjg7APzF8tJFULMtvO+09Pj0k/4oWFjov/IbBeZCjtp4Bro2iORSp69u1ajJOET4w8xZc5/TTxIgkpqa3zpnV37YFlkSIWrxTWMxL9825wm2TEfbC9lawDCAkslSenVlToGU74/c5JDY75rjjFhllKs4zMhpxUvA/RIOm8czR46Um2KC3GSBZTET3w3dFOoadbKFSj06aLUXdprQ5mBOVw/v+X+JUcQgpQHqERjYT75rJBpx5gKjwcn2KrycC9yL//AM1wq7HiQUIcO154OJuH4cJeGMapEKSAoqUFh5F8MdeSlGWlUHOhbweLpsi5Zh5fhb9R0YAjxo0GjMq2yN1e+b5TPp7BvLLvqiGgpMxakjWiJfrI6FLqqQb7jJ1syKrGk3L+yoYLVHFs5fzFRb1tx5gLfAgjWuQLbUdtNOWZNW4JaDbj5fIhn1Ng+SCEscvftuKV/toTwXMtmpDjfNggXftwkH5Dfljbygjm0BRZtXH91XxBwCyqt8fgXKrWEuNvEfxekG20M28bDlYYlAq6Wagwc42KBXbnZBdBZgr9Phx5cDGs9qBvWL6jKaMVBaKXxZIbXI8RHsspsn3EnBKGyjylLboG1Y5QTR/tIM3nVvwQmC0hrg4Z4Baf5NhN813jz3bcG/sY8cIeqKeGGt5DIuE/8nk7FVbEpQxjVtT2erekJ9S2iBMOD//XZzdN+y7W0hjBoGjrb/wtky27aHhQz0ZDk33MA+I+K0z+K8d7SvHw2tquB633hAE96JHv/DcoOD3AY1Y/D13e77fCjTmuPchfrGzqq6+738giamJfM1qfWUN+v8ZDdYQ4PCofwSWVGo6PRTlCZY5q5bpxfSrQ6W60SnjG6JXSyXNgoDqZzQpFz+ignkeFkTC8Wa3QtWht6FR1BVKGix51pff4S4lS+JaEu9FsdJys/dlH8kTaL37EiY3chTwI67vz8Bflr3e67DAPfC8wv1Zd3xeX21Eag+jToQTFhmtLDr6dG6RIYreluopyv4mhrxqp+VZdEa6ILDu2TVC59PZYfd6Ljt12tPcDDcDx5tK6oapzOhHrJ+neuJYSF6TqgCJxBRno4oulfpHthvqUmxx7BrpGCPNbhDqWKh2eQKNAajfVPWMCtyNGIMBxGLkOTN+ixh1muwct1Pt9gPGV0xwur+poMn5vanUN07h5P41hVnWj1ZubKjguDZHj9nAxnJTblUAl3IDmO3EI6NKrZV8eW55nEvdBaQBAjWRnO0LfmO5DJ5GQCPsaM99NwNQHpzIG5R9Ni8eWaFsXgVwHfx9/nx8BrzzIwO+gZn3u4iT7zgtKqoySAf+s9eDAgS0Q20kHSliVyF/Wdku122vzANog+esPWMveYks2sRIvle2Dhyo6+GJ7GRP3ZLDIY0A98URmTkX3HmdMU8wPfBbxZxrJIJDbslxmzNusE68oFI5MgCzk7z+OU8GzhORY8NyhPExjBM0m1YIZD0Bh4NlPGRN8saoaC43puyzPqzX2uZYF9UI4cO6Ds8T8BZf4vldp6A31VXq8DTLiOlVY7G51ejleHQ7NPdxixh4QiQXGdsO5fE4FBaTw7qSjvOD1LOZ1ECw0fMV87ElxyEybRcuWxw2anORKIy4AX9cDKQswJDBzysof5M4eLY9p/k0Kc4piJsziLrotE/1tJ+EdkJsSJSH1CVLlHGmVK3hzdBVNy1Gb5O6NvSEh66YsAIyUuphKdFJxxRztJEqksIcW5ySv4i+QDHRy4mKVFVZ5JpSonGu0MzNEGRKvyHlIuat7bRPCfCg/YPoP6FVIeQN+8/mB0U4m1b5tRUySbE9/wtX4Rrdu67okV9RtKqosSrFqQjSfOuIdm+/vAsX4EiQwo5yv8jAZRhKQz1CdSiTKyGGhGpHKDdLNbbionlRiVBb26+1+prZyh4CL1Muu0mh4wrEsi5dOK3Z5qR9QODWx28StMa58GVvwEfVgt8+jb+K49qjntDpnJ1fmgOFc19eJ+rd8Mvv0LdDB/F0vtGZjMCuQidHoyubLUDW2wiBEYDRtylmWQZmqy2JYcMOw6uDrU27ygHrRZx497TzLWsk/ULAPNghBjlb9NgidQ0VGXRry6cSElXcgSa/TvdcWvlVGD5KSsMHvqIVOcbppCFcLKTrMYXwH0qsKFEYWZmc27OkAGP/zFmnLVF8D2T2TyGsxpLV6vLNKA+AYIGxGC0+V340x5Zh8VPO+fWEyN45rGd7nhycEmgTyUsXdaMRSqJS7R+adW0Ypq7fLKSAXKMlEsjMR/qQBYwi9bz0mpeFTQueN+Ek+sOMsxTIuxx/6KTmru0MDsiEPz1Sn+ZFzWqaHOJ3V3MeM6djj1q8k22jm98aTrr4wb44b3+wPUEDubFg+ocdBgR/VS9CKcMBCudozTQ8jRLYgAG7e731BU+o04izTJIZWllIb3ZyVWWdZ6fuN0rGCeSR13CHNzs2ahZ1Ai4BD3IJ4xdhHizNBauHokmuJQS4mgipQpC2XF6s43B0wQd7fNnLEmWpb1+O+MRS5pBe824J3XnqrD2btX7xrjbcsNyxkwfGGhFa0ReTzHHm1xtSBOoIFZR27FSThoFwAtHIcxl8JiuGiJ9I3b7PgvR462cMD2FETWdVO6pfAbyR4FUnLrA26Oq5lv+v40opxQnMLe23roLBdQAvtjk1NFWaS3iPdVSeSYsEvqOQu6fjnUXc2gn75Qu8jWncJQRFBsZhlEUgoFYsi1V8PqGeF7EfDyr6JxjDOUmVrllOiZrkvUp1lS6R7+WqVFgeb9wZGxRFQ6aCQe3QBNXIjjqE4wTF17odKLWnpTHLMxB3/NmlqZFuIJ5/VBh3gk7r90PXJ0/iHEPODUxwH8b9LqYDtgpq2GZWl0cBPHdh7nKF1J6Q4G4DBuW31afeEUGNtOCf6j2/igtkQgxdsmH0pjqXj6cR37QHBNWamaseRPCBb69aK2uJ8L5Fw5LUxP9HuGcW3tEHSrrFmvgbHSZF16g4yICfHC/fVZmRRAdLLw/s+Ivn2fCbOCqfwOlglmqAfPWGI/Gxc9WAe+bmBvIcMHqIXoW+YVBF09C/hXvf+YRnuuYYQtLrKKTtgO8DEnwjtOPq5ec8Jy6LNNgJteM+pP3qT0cMMtrKHfcndNsI0S9xeML7O8K/IUggLGjuUIpACwhjgkItcH39mdPYJnUjDHPXUSyGFgjNM8KRaXXtZ9tDW80Ck165XVqev9EUHD80TjqTZFB59bh+mLhvtoisj8QzDuj+a5NueJYzDX90lejCdyiSuH24+TtVoYR8WIt2IHA2j0Bp+1Lgvf+L1wL0HzMh7PmxlQXZthLPizwcEZjXNMgNcywBhY2qk01LOWBcLGk/4Cs//1RMWa+/M7hqsvzLoPTVfJ5WHo7D2yqhOraYyMXvhM0+VTsT4wdH+R4emhrMwkwf6oZJn9S01XwBECdmF2kRedkTiLgRRgWxvSdY5Mj3j/Xl+kH6zJKZh/GL2hWdPOglD5OuXKpXVmFltqqwAioMQAPpOTdAnCM4RfjXTpVy1ZIT1zMTHlFQ0FPYeqgLVk5BtNgYo5CnL0I9IADbRrlhaPrtv/X1ZLTCj6SuaAtsUgNjbRwHsen5GeEKIgL23TN+ClJmFrDzEuvEC0ijx7ZZ8ZVMXT75yDorjvHhJPrS1CkYRvzxvLS8yE0HQERW1lIB+y0L2sqyM5lL/G8gXWP4QTTivG6ydfVXJyLKZGFBNGVGejBDeAHbgPN4M1hd0yT49myatBrZ1GkzbbW8BGB3OfpWMlnosYhwgcGr/qVf69XnYulq+Xa+1A+hFNPpJx2Wf4H3nuIuM++A64l3dUOmjjjixvxrjW+1VxIjFitIyzsQ4+ycriyewhg1H+ZrYuYhLUcDOZl7xoP2QTZqBW2xgjAGU+voH5sP8xRkpGa038xlik/pqRzilJ+1MUuz9DhsnTwiilR4LllAIXxhrdA9I27p0xZJp9lqSSCKIt68PrTHyGLhrEB447dBpItpK+fRWsPyUQGVxv9K9i4I5dqgrFBgl8JmdbBng+OngnUSW7wAgqynOnvHWt3imZTTq3tq3X61pYW5F/vhVKXUmUaor5fMRhnWPjsz6nrMfEj/eqZvmxF2rb6tTUyfVWJg8Wk3mJPppiHI5NNTtyZnBD9EHkSH1lr/l/7WeJlaf+iKM4W/SfyhrHPjfLyDJhpQ9fcFYPpUUEpqsg+i1ojJl2HoyO/F68BD3khG75eLvmA1j3GunrXZmPpqKqg70c9ljwdGVQ9sOAeTF37Pw1yVaGRTVqyXRAPflRC2LpR73NwsGwE5hefstO7MfXfKzwahQfnws5Bd6YS/8HzL6R6O2QMKdgY9UgdpUak08MS4RIuumhOp4MGGSghM+NG0BSE2/CNvBRbWyxiSc+l14uuu7gGZbQKlesIaAdS2D4J5XTpCQrXznvWW5imN4+T5UsW7QgJPrcVS6Pe1c/1hcOOS3GPCG1lrE7qfTCoqD7S6snIc7FJb9jJ7xU+oDrDvTUdcKraP/6Ty9VHDQAK5ybgV3QwzfrnKT/U2erZoZmLfmOo3BDAhUULg9UdPI5L/G8IZtifVkqbBLWX0P8c0X1kgGuiQ22C/pa680CpQln/KTwoIwtcqhuUaQMnQpbDDmLUYOEHsbIuvjbvJPcqLS8+O3L+dF0yRP1A1eKER2PIMkZ0NL8lX9FOOydW/7y3Xgrl+9hTZENfIPp6tc95GMLwf0MOEBZW0MC9vGPw3MY47D2bf+LfzrXs7wKweBMsp8tkP/nOmM6zI+bBaj18FFo7cSD+ohd/U/oaQNqG8Ej8JCUp0LpS9kEETpPtPL3eJH63AfK16pB+ERH56vnCxNj8x9x2H2ZhNTLRfIfmgUTlunixca1tkLQgkmaLVSlhtsAFpLx8yXDALnoezfIx4LSb6F6lHDUEptkz7rB7hI2wgityKPKRbTbtaqpzK2kywc0CLZICLgyslSNzT3V+2/DSmn3BdDQOW5Yi3NKOWvP4yl3D3XFTHlaDISxQ7s/Y3qiYCJmWRfRdLjNB/saS/07FqMCz1WLeKTFTkBeal5mnOsoSnO5p9AotbNKqhLePfW3Crd0RcgyBSRmQT1D5Ierwxb8q2XfnHAf8E177vCpE5ztLzmxlL9oxjV16RDvv+Y+XPLjt5ttPXUT8o9sO6NHB0TdxitHUWGcDgszhS9fZ07rBahLovv2A9KRuTeVx+/YUmCdkse2PkIruND7QhkLChBv+KuA8gxJejKxKJUUguHuCTI5Elwd+soNcfz7jLDsXqO6UCVzRDlrFSFO5rjyMI4j6yAJ2EIvu4eNrpjc8XdfUNk/la78wtti9YzxsN0KhRLqesr++34Gww1f/09aw7jrH0yzgdV+mFLYtyiAriWOaSJgHKVmH8pVDmmXoqHX+7E0UDOKzrMtrTsSm5WGP0Y6816J6ylJRWIGVrEv6RmvBilz7TDoFje9QhGTCqT58Lb9FiAsKUDt8bWR40iJp99qZ/U1T4jY7y+aMJkGMhg0l9pDSKt/wqr41b+17BOdFRLe21tSHie2hRAY8+Ic7aBKzPNejCjy8ch9yCZ3e/4iWqhiLYEoi/OQjGmZMVi9klVaFnGcaNfCy92vEzZcRBNvW32B+V6v0tWkg0lvcBguYd2DEujwYPZjhBJPdfUhRrB36uSA3Wby6mMwfjS9Bli91qSMVfbFCvU8HiCLurVJfTYi+pPE+QltGz0Nx9ydc2Z2n0uoRq0MdZnzOd3kZFaYHQHgDcvjjbH/TtOSXJ/mH4NwBWv1cRKDj0IZSRKxotZ07zWW7Vram0XHay+VFY7akbco5qtOwYoS2QzN406+W9IAAHuft88iXX1w97IlNWBoiglNL/OZyClOapUp8cutA5TyS6L/pV5OnSb2NpuLw/PG2O8Kv+HcAlpJzOZZLGc8t/jpLzEWDRawSao7GG3Passneuat6+8H1HWG7/vppw1GmBizHzsFGQpSj1iitX+m8jK4ZWqWd59fwHQq5KntFlj6xuwg/zzsmtAFbZuI/7Gw6jHMUTiKITHANVaaOoXmTETevkIbnG0SH/D79ITQaAC3imGxyd52N2y7eHd4LQSS0QMTqtQKiWMMcD7kFkrESLdk0ttS1Kzv1PNCKXHUMNsKz2nnX1XpL0o5+s6urOQlWHa+eZxXI5sDdF7NzMdNAs/8yzm7p4wyHI3djiTlASyx2d++Mt+Bg87Z7rLy8EYo6Ax3xC1b4f6ld2IL8xIwb8tJGSxgolnNAIOS4ogQoWzX1XhXBT2eutNRNTifizjutHiG70jZ1eB0aCDW1MJYGGFY9nzDHso+2oJYnMLKiYd81uooivfEa+gQv8Xc3daxy04oejRH2uvje4r/durWuSt4GTiRC2wLi+juFLVDX7r/c9pwb+RyB5OWZ7cg57Yg7qrcKtqjW3mDG3yzI6ztP384uNUfapokygYTjqPcz5ydajkjJbwxnbf7zhMyfXjJMD3AAkO0m3FaS4pfp038rtZ+VwGKNhKDTe2HU5qwIG4xJS5XWVdDkX2W6QSJGKQTOWEDR9iO1IugMeyuvAgMNiixZ17vEzV19svr+iOyt9/dd35f9TVm2pXqfX2pWc2++2BPnaJvZiHaB7fYr9JolZpSpvRzDb0mHmSTM1Jw1N5w60KkIuf+ekad7QVNjx2z3u285cEjvydQsn+l2WBGwgFYXfkKiFGzHvxvOxwUJmL8qfv/9F5FNc4MW7/hd9nXFlI9Fg8vCKSnYva86vmymwZCVT9yQps0pXKcmEjJtqItYYtu/00nhGfeFRf6aL5WXhEyD2zxCf0bbVlqp9pSOt+SBHlqaHxU+QEMSoCs6fTWKTTt0aFw99h9qK9b3rBBb5Y2P7OV80o1lQ4jD6889SgaYwlzJQtcMK0tOrFG6y4KFGJ/vEllzkgPVchH2H0W4QK19gzq+H68aBmggXl6mJo+RBADTanJPrkB9WKarsFrRlMk/sFWiKm8H+0Sya13nYqOubGgTF6byrsXCSNZrlFRT71Yl9ZXM0Kg/wbgSUKRYpfRritRpQNBipMxW+bKBJaocn7m370kW1+351XGjJ83LbVAIvcinXwDtvK2Rb1qvLNmV9vCJK3/9HPzIFkX8/qmVUWenTM3rC1Fi9rUJaHM4iXP4Zx2OdmIMLRIPORQxfyN/1Ggn9Bh7l+JyyuTRfs36Ce3e8TlD/4ww==","page":{"show404Page":0,"autoLogin":"NO","autoPublish":"NO","styleAndNavigation":{"heading":["georgia","mediumHeading","#6C992D","rgba(46,46,46,0.75)"],"subheading":["georgia","mediumSubHeading","#6C992D","left"],"content":["georgia","mediumContent","#FFFFFF","left"],"button":["georgia","mediumContent","rgba(108,153,45,1)","rgba(255,255,255,1)"],"secondaryButton":["georgia","mediumContent","rgba(168,168,168,1)","#FFFFFF"],"pageBackroundColor":"rgba(0,0,0,0.1)","borderColor":"rgba(255,255,255,1)","hideBorder":0},"pageTitle":"Quiz","lang":"pt","pageIapDetails":{"iapEnable":"Off"},"metaDetails":{"metaKeywords":"Questionário","metaDescription":"Adicione um quiz on-line para manter o interesse do cliente vivo e também educá-los sobre temas relevantes através do aplicativo.","metaTitle":"Questionário"},"randomQuection":"0","displayResultQuest":"0","loginStatus":"0","quizName":"Quiz","setting":{"time":"120","passingscore":"70","showhint":"1","nextbutton":"Próximo","singlechoice":"Selecione a melhor escolha.","multiplechoice":"Selecione [$] respostas.","prevbutton":"Anterior","finishbutton":"Terminar","startbutton":"Comece o teste","resultscreentitle":"Seu resultado:","resultscreenresultline":"respostas corretas.","welcometext":"Vamos testar seus conhecimentos em Supply Chain?\n\n\n\nVamos nessa!?","skip":"Pergunta pulada","timeleft":"Tempo restante","questiontxt":"Questão","submit":"Enviar","thanksText":"Obrigado!","randomQuestion":"0","questionsasked":"Perguntas feitas","questionscorrect":"Perguntas corretas","questionsincorrect":"Perguntas incorretas","timeelapsed":"Tempo decorrido","finalscore":"Pontuação final","passingscoretxt":"Pontuação de passagem","notattempted":"Pergunta não tentada","questionAndSoOn":"* Q1 = pergunta 1 e assim por diante","pleaseselectatleastoneoption":"Aplicativo ainda não foi publicado","correcttext":"Corrigir","wrongtext":"Errado","iscored":"eu marquei","sharetext":"Faça este teste e teste seus poderes intelectuais instalando este aplicativo","passthanksmsg":"Parabéns! Você passou no teste","failedmsg":"Desculpa! Você falhou no teste. Por favor, tente novamente","submitResult":"Enviar resultado","thanksImage":"Quiz_logo-png-branco_1583495665.png","thanksImagePath":""},"questions":[{"question":"ㅤㅤㅤ","queId":0,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/1_1583496347.jpg","answers":[{"answer":"A integração dos componentes logísticos reduz valor ao assegurar o atendimento às necessidades dos clientes.","correct":"","ansId":0,"queId":0,"ansImgUrl":""},{"answer":"Os componentes transporte, armazenagem, embalagem e manuseio, gerenciados com base nas trocas compensatórias (trade-offs) identificadas e exploradas, contribuem para a obtenção do menor custo total logístico.","correct":"true","ansId":1,"queId":0,"ansImgUrl":""},{"answer":"Os sistemas de informação atuam ao longo das cadeias de suprimentos para dificultar as ações de interação e coordenação dos agentes e na prestação de informações aos clientes.","correct":"false","ansId":2,"queId":0,"ansImgUrl":""},{"answer":"A gestão de inventário, integrada às formas de suprimentos e distribuição, contribui para o aumento de custos e para a diminuição da velocidade das operações logísticas.","correct":"false","ansId":3,"queId":0,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":1,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/2_1583496484.jpg","answers":[{"answer":"Os sistemas de informação complicam a ACS ao exigirem a introdução e o controle de dados considerados fidedignos.","correct":"false","ansId":0,"queId":1,"ansImgUrl":""},{"answer":"A possibilidade de acompanhamento, em tempo real, do processo de transferência (compra – entrega) de produtos não constitui mais vantagem competitiva, mas uma exigência comum nas transações comerciais dos dias atuais.","correct":"true","ansId":1,"queId":1,"ansImgUrl":""},{"answer":"A dificuldade de uso de sistemas de informação e formas de comunicação está relacionada também ao elevado custos de suas permissões de uso.","correct":"false","ansId":2,"queId":1,"ansImgUrl":""},{"answer":"O uso de sistemas de informação é um modismo, e a tendência é que seja substituído por relações pessoais e reuniões presenciais entre os profissionais da logística.","correct":"false","ansId":3,"queId":1,"ansImgUrl":""}],"multiple":0},{"question":"ㅤ","queId":2,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/3_1583497420.jpg","answers":[{"answer":"É a identificação dos agentes (elos) e dos componentes da cadeia, determinando-se as características de sua inter-relação e os fluxos físicos e de informação que apresentam.","correct":"false","ansId":0,"queId":2,"ansImgUrl":""},{"answer":"É o desenho em uma carta geográfica da localização dos componentes (elos) da cadeia, assim como das rotas utilizadas, determinando-se os modos de transporte possíveis utilizados.","correct":"false","ansId":1,"queId":2,"ansImgUrl":""},{"answer":"Ele define, por si só, se uma cadeia de suprimentos é doméstica ou internacional. Um mapa com a identificação de países e localidades é a ferramenta básica para tanto e apoia eventuais procedimentos alfandegários.","correct":"false","ansId":2,"queId":2,"ansImgUrl":""},{"answer":"Possui duas vertentes: identificação dos componentes e das tarefas executadas e a determinação das relações entre esses componentes (elos) e as suas interações. O objetivo é atingir o melhor resultado possível na agregação de calor aos clientes e aos acionistas.","correct":"true","ansId":3,"queId":2,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":3,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/4_1583497684.jpg","answers":[{"answer":"Custos medem o desempenho das cadeias de suprimentos, ou seja, o atendimento de objetivos condicionado ao valor agregado aos acionistas. O custo total logístico é a média dos custos dos componentes logísticos, os quais, por sua vez, exprimem e são resultados das trocas compensatórias de custos dos componentes logísticos.","correct":"false","ansId":0,"queId":3,"ansImgUrl":""},{"answer":"O atendimento ao objetivo de minimização de custos das cadeias de suprimentos define seus resultados como um todo e possibilita a busca da satisfação dos clientes e a agregação de valor logístico aos produtos.","correct":"true","ansId":1,"queId":3,"ansImgUrl":""},{"answer":"Custos são independes do atendimento às necessidades dos clientes, os quais devem, por princípio, ser sempre mantidos satisfeitos e livres.","correct":"false","ansId":2,"queId":3,"ansImgUrl":""},{"answer":"Os custos logísticos têm como base a identificação e o controle do custo total de uma cadeia de suprimentos e, como tal, devem ser assumidos pela empresa focal da cadeia, que não tem preocupações com a sua rentabilidade.","correct":"false","ansId":3,"queId":3,"ansImgUrl":""}],"multiple":0},{"question":"ㅤ","queId":4,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/7_1583498283.jpg","answers":[{"answer":"Depende de outros modais para realiza a movimentação da origem ao destino.","correct":"false","ansId":0,"queId":4,"ansImgUrl":""},{"answer":"É adequado para distâncias maiores do que 500 km.","correct":"false","ansId":1,"queId":4,"ansImgUrl":""},{"answer":"Apresenta baixo custo por unidade transportada.","correct":"false","ansId":2,"queId":4,"ansImgUrl":""},{"answer":"É o único que tem condições de realizar entregas door to door.","correct":"true","ansId":3,"queId":4,"ansImgUrl":""}],"multiple":0},{"question":"ㅤ","queId":5,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/6_1583498427.jpg","answers":[{"answer":"Uma estratégia de tempo de resposta.","correct":"false","ansId":0,"queId":5,"ansImgUrl":""},{"answer":"Uma característica básica de uma cadeia de suprimentos responsiva.","correct":"false","ansId":1,"queId":5,"ansImgUrl":""},{"answer":"Uma estratégia tipicamente antecipatória.","correct":"false","ansId":2,"queId":5,"ansImgUrl":""},{"answer":"Uma estratégia de adiamento.","correct":"true","ansId":3,"queId":5,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":6,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/9_1583498673.jpg","answers":[{"answer":"A intermodalidade consiste na utilização de dois ou mais modais de transportes para ligar a origem ao destino.","correct":"true","ansId":0,"queId":6,"ansImgUrl":""},{"answer":"A multimodalidade e a intermodalidade são idênticas quanto aos processos documentais.","correct":"false","ansId":1,"queId":6,"ansImgUrl":""},{"answer":"O transporte aquaviário fluvial, muito utilizado no Brasil, exige a intermodalidade.","correct":"false","ansId":2,"queId":6,"ansImgUrl":""},{"answer":"O modal aeroviário, ideal para commodities, trabalha exclusivamente com a multimodalidade.","correct":"false","ansId":3,"queId":6,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":7,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/10_1583498789.jpg","answers":[{"answer":"Sistema em que se utiliza um ou poucos intermediários de forma exclusiva. Tem como base um acordo em que o distribuidor (varejista, por exemplo) se compromete através de contrato firmado para vender produtos de apenas um fabricante.","correct":"false","ansId":0,"queId":7,"ansImgUrl":""},{"answer":"Tem como objetivo distribuir o produto no maior número possível de pontos de vendas. Normalmente é utilizado para produtos de alto consumo e baixo valor agregado (baixo custo unitário).","correct":"true","ansId":1,"queId":7,"ansImgUrl":""},{"answer":"Do ponto de vista logístico, tem-se nesse sistema um trabalho intensivo no sentido de se adaptar às normas do fabricante. Um exemplo de utilização desse sistema é o setor automobilístico.","correct":"false","ansId":2,"queId":7,"ansImgUrl":""},{"answer":"Uma forma de operar esse sistema é por meio de representantes comerciais, que levam os produtos aos pontos de varejo – lojas que detenham exclusividade na venda do produto.","correct":"false","ansId":3,"queId":7,"ansImgUrl":""}],"multiple":0}],"randQuestions":[{"question":"ㅤ","queId":2,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/3_1583497420.jpg","answers":[{"answer":"É a identificação dos agentes (elos) e dos componentes da cadeia, determinando-se as características de sua inter-relação e os fluxos físicos e de informação que apresentam.","correct":"false","ansId":0,"queId":2,"ansImgUrl":""},{"answer":"É o desenho em uma carta geográfica da localização dos componentes (elos) da cadeia, assim como das rotas utilizadas, determinando-se os modos de transporte possíveis utilizados.","correct":"false","ansId":1,"queId":2,"ansImgUrl":""},{"answer":"Ele define, por si só, se uma cadeia de suprimentos é doméstica ou internacional. Um mapa com a identificação de países e localidades é a ferramenta básica para tanto e apoia eventuais procedimentos alfandegários.","correct":"false","ansId":2,"queId":2,"ansImgUrl":""},{"answer":"Possui duas vertentes: identificação dos componentes e das tarefas executadas e a determinação das relações entre esses componentes (elos) e as suas interações. O objetivo é atingir o melhor resultado possível na agregação de calor aos clientes e aos acionistas.","correct":"true","ansId":3,"queId":2,"ansImgUrl":""}],"multiple":0},{"question":"ㅤ","queId":5,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/6_1583498427.jpg","answers":[{"answer":"Uma estratégia de tempo de resposta.","correct":"false","ansId":0,"queId":5,"ansImgUrl":""},{"answer":"Uma característica básica de uma cadeia de suprimentos responsiva.","correct":"false","ansId":1,"queId":5,"ansImgUrl":""},{"answer":"Uma estratégia tipicamente antecipatória.","correct":"false","ansId":2,"queId":5,"ansImgUrl":""},{"answer":"Uma estratégia de adiamento.","correct":"true","ansId":3,"queId":5,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":3,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/4_1583497684.jpg","answers":[{"answer":"Custos medem o desempenho das cadeias de suprimentos, ou seja, o atendimento de objetivos condicionado ao valor agregado aos acionistas. O custo total logístico é a média dos custos dos componentes logísticos, os quais, por sua vez, exprimem e são resultados das trocas compensatórias de custos dos componentes logísticos.","correct":"false","ansId":0,"queId":3,"ansImgUrl":""},{"answer":"O atendimento ao objetivo de minimização de custos das cadeias de suprimentos define seus resultados como um todo e possibilita a busca da satisfação dos clientes e a agregação de valor logístico aos produtos.","correct":"true","ansId":1,"queId":3,"ansImgUrl":""},{"answer":"Custos são independes do atendimento às necessidades dos clientes, os quais devem, por princípio, ser sempre mantidos satisfeitos e livres.","correct":"false","ansId":2,"queId":3,"ansImgUrl":""},{"answer":"Os custos logísticos têm como base a identificação e o controle do custo total de uma cadeia de suprimentos e, como tal, devem ser assumidos pela empresa focal da cadeia, que não tem preocupações com a sua rentabilidade.","correct":"false","ansId":3,"queId":3,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":1,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/2_1583496484.jpg","answers":[{"answer":"Os sistemas de informação complicam a ACS ao exigirem a introdução e o controle de dados considerados fidedignos.","correct":"false","ansId":0,"queId":1,"ansImgUrl":""},{"answer":"A possibilidade de acompanhamento, em tempo real, do processo de transferência (compra – entrega) de produtos não constitui mais vantagem competitiva, mas uma exigência comum nas transações comerciais dos dias atuais.","correct":"true","ansId":1,"queId":1,"ansImgUrl":""},{"answer":"A dificuldade de uso de sistemas de informação e formas de comunicação está relacionada também ao elevado custos de suas permissões de uso.","correct":"false","ansId":2,"queId":1,"ansImgUrl":""},{"answer":"O uso de sistemas de informação é um modismo, e a tendência é que seja substituído por relações pessoais e reuniões presenciais entre os profissionais da logística.","correct":"false","ansId":3,"queId":1,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":7,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/10_1583498789.jpg","answers":[{"answer":"Sistema em que se utiliza um ou poucos intermediários de forma exclusiva. Tem como base um acordo em que o distribuidor (varejista, por exemplo) se compromete através de contrato firmado para vender produtos de apenas um fabricante.","correct":"false","ansId":0,"queId":7,"ansImgUrl":""},{"answer":"Tem como objetivo distribuir o produto no maior número possível de pontos de vendas. Normalmente é utilizado para produtos de alto consumo e baixo valor agregado (baixo custo unitário).","correct":"true","ansId":1,"queId":7,"ansImgUrl":""},{"answer":"Do ponto de vista logístico, tem-se nesse sistema um trabalho intensivo no sentido de se adaptar às normas do fabricante. Um exemplo de utilização desse sistema é o setor automobilístico.","correct":"false","ansId":2,"queId":7,"ansImgUrl":""},{"answer":"Uma forma de operar esse sistema é por meio de representantes comerciais, que levam os produtos aos pontos de varejo – lojas que detenham exclusividade na venda do produto.","correct":"false","ansId":3,"queId":7,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤ","queId":6,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/9_1583498673.jpg","answers":[{"answer":"A intermodalidade consiste na utilização de dois ou mais modais de transportes para ligar a origem ao destino.","correct":"true","ansId":0,"queId":6,"ansImgUrl":""},{"answer":"A multimodalidade e a intermodalidade são idênticas quanto aos processos documentais.","correct":"false","ansId":1,"queId":6,"ansImgUrl":""},{"answer":"O transporte aquaviário fluvial, muito utilizado no Brasil, exige a intermodalidade.","correct":"false","ansId":2,"queId":6,"ansImgUrl":""},{"answer":"O modal aeroviário, ideal para commodities, trabalha exclusivamente com a multimodalidade.","correct":"false","ansId":3,"queId":6,"ansImgUrl":""}],"multiple":0},{"question":"ㅤㅤㅤ","queId":0,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/1_1583496347.jpg","answers":[{"answer":"A integração dos componentes logísticos reduz valor ao assegurar o atendimento às necessidades dos clientes.","correct":"","ansId":0,"queId":0,"ansImgUrl":""},{"answer":"Os componentes transporte, armazenagem, embalagem e manuseio, gerenciados com base nas trocas compensatórias (trade-offs) identificadas e exploradas, contribuem para a obtenção do menor custo total logístico.","correct":"true","ansId":1,"queId":0,"ansImgUrl":""},{"answer":"Os sistemas de informação atuam ao longo das cadeias de suprimentos para dificultar as ações de interação e coordenação dos agentes e na prestação de informações aos clientes.","correct":"false","ansId":2,"queId":0,"ansImgUrl":""},{"answer":"A gestão de inventário, integrada às formas de suprimentos e distribuição, contribui para o aumento de custos e para a diminuição da velocidade das operações logísticas.","correct":"false","ansId":3,"queId":0,"ansImgUrl":""}],"multiple":0},{"question":"ㅤ","queId":4,"videourl":"","audiourl":"","mediaActive":"image","media":"https://ptsnappy.appypie.com/media/user_space/0da61d734bcf/quiz/7_1583498283.jpg","answers":[{"answer":"Depende de outros modais para realiza a movimentação da origem ao destino.","correct":"false","ansId":0,"queId":4,"ansImgUrl":""},{"answer":"É adequado para distâncias maiores do que 500 km.","correct":"false","ansId":1,"queId":4,"ansImgUrl":""},{"answer":"Apresenta baixo custo por unidade transportada.","correct":"false","ansId":2,"queId":4,"ansImgUrl":""},{"answer":"É o único que tem condições de realizar entregas door to door.","correct":"true","ansId":3,"queId":4,"ansImgUrl":""}],"multiple":0}],"pageIdentifire":"quiz_1581358035102_46","pageId":"quiz","pageUrl":"quiz_1581358035102_46","iapStatus":false,"pageKey":{"autoLogin":"NO","pageIdentifierBecon":"quiz_1581358035102_46","pageNewid":"Quiz","pageUrl":"quiz_1581358035102_46","pageid":"quiz","premium":0,"webIconName":"https://api.appexecutable.com/pageTheme/imglist/university-quiz.jpg","iapStatus":false},"appid":"0da61d734bcf","config":{"appName":"www.ucsc.tv","appPwa":0,"deviceId":"20","device":"desktop","profileImage":"/static/images/user-pic.png","email":null,"userid":null,"geolocation":{"latitude":0,"longitude":0},"token":"367619f95848140012e2534f7738b8bb109c0d4097d4f74e5ca558b8d4eb75c3cde10df72d2a7b894ee2f886d04815d5a9ceefb1bc67cd3c8f3cbf2229b9d0a798f13708210194c475687be6106a3b84"},"deviceId":"20"},"match":{"page":"quiz_1581358035102_46","hostname":"www.ucsc.tv"}}},"page":"/page","query":{"page":"quiz_1581358035102_46"},"buildId":"1234567890","dynamicBuildId":false,"runtimeConfig":{"buildId":"1234567890","webservice":"https://api.appexecutable.com/webservices/V2PWA/","reseller":"https://api.appexecutable.com","rssURL":"https://api.appexecutable.com/webservices/V2PWA/ApiManager/ExternalApi.php","bucket":"https://d2wuvg8krwnvon.cloudfront.net","version":0}}
["/_next/static/runtime/webpack-a9a1cf9a868832835ec4.js","/_next/static/chunks/commons.9a39b0ad7f6376cef434.js","/_next/static/runtime/main-c1a304b941c7ffed5756.js"]